Volatile and intravenous anesthetics decrease glutamate release from cortical brain slices during anoxia. 1995

P E Bickler, and L T Buck, and J R Feiner
Department of Anesthesia, University of California School of Medicine, San Francisco 94143-0542, USA.

BACKGROUND Extracellular accumulation of the excitatory neurotransmitter L-glutamate during cerebral hypoxia or ischemia contributes to neuronal death. Anesthetics inhibit release of synaptic neurotransmitters but it is unknown if they alter net extrasynaptic glutamate release, which accounts for most of the glutamate released during hypoxia or ischemia. The purpose of this study was to determine if different types of anesthetics decrease hypoxia-induced glutamate release from rat brain slices. METHODS Glutamate released from cortical brain slices was measured fluorometrically with the glutamate dehydrogenase catalyzed formation of the reduced form of nicotinamide adenine dinucleotide phosphate. Glutamate release was measured in oxygenated (PO2 = 400 mmHg), hypoxic ((PO2 = 20 mmHg), and anoxic ((PO2 = 20 mmHg plus 100 microM NaCN) solutions and with clinical concentrations of anesthetics (halothane 325 microM, enflurane 680 microM, propofol 200 microM, sodium thiopental 50 microM). The source of glutamate released during these stresses was defined with toxins inhibiting N and P type voltage-gated calcium channels, and with calcium-free medium. RESULTS Glutamate released during hypoxia or anoxia was 1.5 and 5.3 times greater, respectively, than that evoked by depolarization with 30 mM KCl. Hypoxia/anoxia-induced glutamate release was not mediated by synaptic voltage-gated calcium channels, but probably by the reversal of normal uptake mechanisms. Halothane, enflurane, and sodium thiopental, but not propofol, decreased hypoxia-evoked glutamate release by 50-70% (P < 0.05). None of the anesthetics alter basal glutamate release. CONCLUSIONS The authors conclude that halothane, enflurane, and sodium thiopental but not propofol, at clinical concentrations, decrease extrasynaptic release of L-glutamate during hypoxic stress.

UI MeSH Term Description Entries
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004737 Enflurane An extremely stable inhalation anesthetic that allows rapid adjustments of anesthesia depth with little change in pulse or respiratory rate. Alyrane,Enfran,Enlirane,Ethrane,Etran
D006221 Halothane A nonflammable, halogenated, hydrocarbon anesthetic that provides relatively rapid induction with little or no excitement. Analgesia may not be adequate. NITROUS OXIDE is often given concomitantly. Because halothane may not produce sufficient muscle relaxation, supplemental neuromuscular blocking agents may be required. (From AMA Drug Evaluations Annual, 1994, p178) 1,1,1-Trifluoro-2-Chloro-2-Bromoethane,Fluothane,Ftorotan,Narcotan
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D013874 Thiopental A barbiturate that is administered intravenously for the induction of general anesthesia or for the production of complete anesthesia of short duration. Penthiobarbital,Thiomebumal,Thiopentobarbital,Bomathal,Nesdonal,Pentothal,Pentothal Sodico,Sodipental,Thionembutal,Thiopental Nycomed,Thiopental Sodium,Thiopentone,Tiobarbital Braun,Trapanal
D015742 Propofol An intravenous anesthetic agent which has the advantage of a very rapid onset after infusion or bolus injection plus a very short recovery period of a couple of minutes. (From Smith and Reynard, Textbook of Pharmacology, 1992, 1st ed, p206). Propofol has been used as ANTICONVULSANTS and ANTIEMETICS. Disoprofol,2,6-Bis(1-methylethyl)phenol,2,6-Diisopropylphenol,Aquafol,Diprivan,Disoprivan,Fresofol,ICI-35,868,ICI-35868,Ivofol,Propofol Abbott,Propofol Fresenius,Propofol MCT,Propofol Rovi,Propofol-Lipuro,Recofol,2,6 Diisopropylphenol,ICI 35,868,ICI 35868,ICI35,868,ICI35868
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018685 Anesthetics, Inhalation Gases or volatile liquids that vary in the rate at which they induce anesthesia; potency; the degree of circulation, respiratory, or neuromuscular depression they produce; and analgesic effects. Inhalation anesthetics have advantages over intravenous agents in that the depth of anesthesia can be changed rapidly by altering the inhaled concentration. Because of their rapid elimination, any postoperative respiratory depression is of relatively short duration. (From AMA Drug Evaluations Annual, 1994, p173) Inhalation Anesthetic,Inhalation Anesthetics,Anesthetic Gases,Anesthetic, Inhalation,Gases, Anesthetic

Related Publications

P E Bickler, and L T Buck, and J R Feiner
June 1995, Amino acids,
P E Bickler, and L T Buck, and J R Feiner
October 2000, British journal of pharmacology,
P E Bickler, and L T Buck, and J R Feiner
August 2005, Cellular and molecular neurobiology,
P E Bickler, and L T Buck, and J R Feiner
May 2003, Toxicological sciences : an official journal of the Society of Toxicology,
P E Bickler, and L T Buck, and J R Feiner
February 1994, Toxicon : official journal of the International Society on Toxinology,
P E Bickler, and L T Buck, and J R Feiner
January 2000, Life sciences,
P E Bickler, and L T Buck, and J R Feiner
January 1989, Brain research,
Copied contents to your clipboard!