A cellular automaton model for the proliferation of migrating contact-inhibited cells. 1995

Y Lee, and S Kouvroukoglou, and L V McIntire, and K Zygourakis
Department of Chemical Engineering, Rice University, Houston, Texas 77251-1892, USA.

A cellular automaton is used to develop a model describing the proliferation dynamics of populations of migrating, contact-inhibited cells. Simulations are carried out on two-dimensional networks of computational sites that are finite-state automata. The discrete model incorporates all the essential features of the cell locomotion and division processes, including the complicated dynamic phenomena occurring when cells collide. In addition, model parameters can be evaluated by using data from long-term tracking and analysis of cell locomotion. Simulation results are analyzed to determine how the competing processes of contact inhibition and cell migration affect the proliferation rates. The relation between cell density and contact inhibition is probed by following the temporal evolution of the population-average speed of locomotion. Our results show that the seeding cell density, the population-average speed of locomotion, and the spatial distribution of the seed cells are crucial parameters in determining the temporal evolution of cell proliferation rates. The model successfully predicts the effect of cell motility on the growth of isolated megacolonies of keratinocytes, and simulation results agree very well with experimental data. Model predictions also agree well with experimentally measured proliferation rates of bovine pulmonary artery endothelial cells (BPAE) cultured in the presence of a growth factor (bFGF) that up-regulates cell motility.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011651 Pulmonary Artery The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs. Arteries, Pulmonary,Artery, Pulmonary,Pulmonary Arteries
D011897 Random Allocation A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects. Randomization,Allocation, Random
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003260 Contact Inhibition Arrest of cell locomotion or cell division when two cells come into contact. Inhibition, Contact,Contact Inhibitions,Inhibitions, Contact

Related Publications

Y Lee, and S Kouvroukoglou, and L V McIntire, and K Zygourakis
April 2006, Physical biology,
Y Lee, and S Kouvroukoglou, and L V McIntire, and K Zygourakis
January 1994, Biotechnology and bioengineering,
Y Lee, and S Kouvroukoglou, and L V McIntire, and K Zygourakis
May 1987, Physical review letters,
Y Lee, and S Kouvroukoglou, and L V McIntire, and K Zygourakis
August 1996, Physical review letters,
Y Lee, and S Kouvroukoglou, and L V McIntire, and K Zygourakis
May 1990, Physical review letters,
Y Lee, and S Kouvroukoglou, and L V McIntire, and K Zygourakis
July 2004, IEEE transactions on bio-medical engineering,
Y Lee, and S Kouvroukoglou, and L V McIntire, and K Zygourakis
January 2000, Computers in biology and medicine,
Y Lee, and S Kouvroukoglou, and L V McIntire, and K Zygourakis
January 2010, Physical review. E, Statistical, nonlinear, and soft matter physics,
Y Lee, and S Kouvroukoglou, and L V McIntire, and K Zygourakis
March 1993, Journal of theoretical biology,
Y Lee, and S Kouvroukoglou, and L V McIntire, and K Zygourakis
June 2003, Physical review. E, Statistical, nonlinear, and soft matter physics,
Copied contents to your clipboard!