Physical and chemical effects of red cells in the shear-induced aggregation of human platelets. 1995

H L Goldsmith, and D N Bell, and S Braovac, and A Steinberg, and F McIntosh
McGill University Medical Clinic, Montreal General Hospital, Canada.

Both chemical and physical effects of red cells have been implicated in the spontaneous aggregation of platelets in sheared whole blood (WB). To determine whether the chemical effect is due to ADP leaking from the red cells, a previously described technique for measuring the concentration and size of single platelets and aggregates was used to study the shear-induced aggregation of platelets in WB flowing through 1.19-mm-diameter polyethylene tubing in the presence and absence of the ADP scavenger enzyme system phosphocreatine-creatine phosphokinase (CP-CPK). Significant spontaneous aggregation was observed at mean tube shear rates, (G) = 41.9 and 335 s-1 (42% and 13% decrease in single platelets after a mean transit time (t) = 43 s, compared to 89 and 95% decrease with 0.2 microM ADP). The addition of CP-CPK, either at the time of, or 30 min before each run, completely abolished aggregation. In the presence of 0.2 microM ADP, CP-CPK caused a reversal of aggregation at (t) = 17 s after 30% of single cells had aggregated. To determine whether red cells exert a physical effect by increasing the time of interaction of two colliding platelets (thereby increasing the proportion of collisions resulting in the formation of aggregates), an optically transparent suspension of 40% reconstituted red cell ghosts in serum containing 2.5-micron-diameter latex spheres (3 x 10(5)/microliters) flowing through 100-microns-diameter tubes was used as a model of platelets in blood, and the results were compared with those obtained in a control suspension of latex spheres in serum alone. Two-body collisions between microspheres in the interior of the flowing ghost cell or serum suspensions at shear rates from 5 to 90 s-1 were recorded on cine film. The films were subsequently analyzed, and the measured doublet lifetime, tau meas, was compared with that predicted by theory in the absence of interactions with other particles, tau theor. The mean (tau meas/tau theor) for doublets in ghost cell suspensions was 1.614 +/- 1.795 (SD; n = 320), compared to a value of 1.001 +/- 0.312 (n = 90) for doublets in serum. Whereas 11% of doublets in ghost cell suspensions had lifetimes from 2.5 to 5 times greater than predicted, in serum, no doublets had lifetimes greater than 1.91 times that predicted. There was no statistically significant correlation between tau meas/tau theor and shear rate, but the values of tau meas/tau theor for low-angle collisions in ghost cell suspensions were significantly greater than for high-angle collisions.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007840 Latex A milky, product excreted from the latex canals of a variety of plant species that contain cauotchouc. Latex is composed of 25-35% caoutchouc, 60-75% water, 2% protein, 2% resin, 1.5% sugar & 1% ash. RUBBER is made by the removal of water from latex.(From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed). Hevein proteins are responsible for LATEX HYPERSENSITIVITY. Latexes are used as inert vehicles to carry antibodies or antigens in LATEX FIXATION TESTS. Latices,Latice
D008863 Microspheres Small uniformly-sized spherical particles, of micrometer dimensions, frequently labeled with radioisotopes or various reagents acting as tags or markers. Latex Beads,Latex Particles,Latex Spheres,Microbeads,Bead, Latex,Beads, Latex,Latex Bead,Latex Particle,Latex Sphere,Microbead,Microsphere,Particle, Latex,Particles, Latex,Sphere, Latex,Spheres, Latex
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010974 Platelet Aggregation The attachment of PLATELETS to one another. This clumping together can be induced by a number of agents (e.g., THROMBIN; COLLAGEN) and is part of the mechanism leading to the formation of a THROMBUS. Aggregation, Platelet
D011095 Polyethylenes Synthetic thermoplastics that are tough, flexible, inert, and resistant to chemicals and electrical current. They are often used as biocompatible materials for prostheses and implants. Ethylene Polymers,Ethene Homopolymers,Homopolymers, Ethene,Polymers, Ethylene
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle

Related Publications

H L Goldsmith, and D N Bell, and S Braovac, and A Steinberg, and F McIntosh
December 1984, Blood,
H L Goldsmith, and D N Bell, and S Braovac, and A Steinberg, and F McIntosh
January 1976, Transactions - American Society for Artificial Internal Organs,
H L Goldsmith, and D N Bell, and S Braovac, and A Steinberg, and F McIntosh
February 2002, Thrombosis research,
H L Goldsmith, and D N Bell, and S Braovac, and A Steinberg, and F McIntosh
July 1993, Biophysical journal,
H L Goldsmith, and D N Bell, and S Braovac, and A Steinberg, and F McIntosh
January 1994, Thrombosis and haemostasis,
H L Goldsmith, and D N Bell, and S Braovac, and A Steinberg, and F McIntosh
December 1998, Thrombosis research,
H L Goldsmith, and D N Bell, and S Braovac, and A Steinberg, and F McIntosh
August 2014, Clinical & experimental metastasis,
H L Goldsmith, and D N Bell, and S Braovac, and A Steinberg, and F McIntosh
August 1981, Thrombosis and haemostasis,
H L Goldsmith, and D N Bell, and S Braovac, and A Steinberg, and F McIntosh
August 1987, Atherosclerosis,
H L Goldsmith, and D N Bell, and S Braovac, and A Steinberg, and F McIntosh
January 2007, Biofizika,
Copied contents to your clipboard!