Effects of divalent cations and nucleotides on the 14CO2-oxaloacetate exchange catalyzed by the phosphoenol pyruvate carboxykinase from the moderate halophile, Vibrio costicola. 1995

M S Salvarrey, and J J Cazzulo, and J J Cannata
Cátedra de Química Biología, Facultad de medicina, Universidad de Buenos Aires, Paraguay, Argentina.

The phosphoenolpyruvate carboxykinase (PEPCK) from Vibrio costicola catalyzed a 14CO2-oxaloacetate exchange reaction with an unusual nucleotide specificity. ATP gave the higher apparent catalytic efficiency (Vmax/Km, 6.78), followed by GTP (1.30), CTP (0.87) and ITP (0.66). Maximal activity required a divalent cation; CdCl2 and MgCl2 synergistically activated the enzyme, when added in the presence of MnCl2. The sigmoidal saturation curve for MnCl2 (apparent n 2.11) was converted into a hyperbola by 0.01 mM CdCl2 (apparent n 1). The results suggest a double role of the divalent cation in the reaction mechanism, namely as part of the MeATP2- substrate and as free Me2+. Mn2+ would be the best for the first, and Cd2+ for the second role. Preincubation with 0.01 mM CdCl2 increased the activity of the enzyme assayed with MgATP2- through an increase in Vmax; addition of CdCl2 to the reaction mixture elicited further activation, through a 17-fold decrease in the apparent Km for MgATP2-. These results, together with the biphasic curve of activation by CdCl2 when used alone, suggest the existence of two different sites for free Cd2+ on the enzyme.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010071 Oxaloacetates Derivatives of OXALOACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include a 2-keto-1,4-carboxy aliphatic structure. Ketosuccinates,Oxosuccinates,Oxaloacetic Acids
D010729 Phosphoenolpyruvate Carboxykinase (GTP) An enzyme of the lyase class that catalyzes the conversion of GTP and oxaloacetate to GDP, phosphoenolpyruvate, and carbon dioxide. This reaction is part of gluconeogenesis in the liver. The enzyme occurs in both the mitochondria and cytosol of mammalian liver. (From Dorland, 27th ed) EC 4.1.1.32. GTP-Dependent Phosphoenolpyruvate Carboxykinase,Carboxykinase, GTP-Dependent Phosphoenolpyruvate,GTP Dependent Phosphoenolpyruvate Carboxykinase,Phosphoenolpyruvate Carboxykinase, GTP-Dependent
D011865 Radioisotope Dilution Technique Method for assessing flow through a system by injection of a known quantity of radionuclide into the system and monitoring its concentration over time at a specific point in the system. (From Dorland, 28th ed) Radioisotope Dilution Technic,Dilution Technic, Radioisotope,Dilution Technics, Radioisotope,Dilution Technique, Radioisotope,Dilution Techniques, Radioisotope,Radioisotope Dilution Technics,Radioisotope Dilution Techniques,Technic, Radioisotope Dilution,Technics, Radioisotope Dilution,Technique, Radioisotope Dilution,Techniques, Radioisotope Dilution
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug

Related Publications

M S Salvarrey, and J J Cazzulo, and J J Cannata
August 1977, Canadian journal of biochemistry,
M S Salvarrey, and J J Cazzulo, and J J Cannata
December 1979, Experientia,
M S Salvarrey, and J J Cazzulo, and J J Cannata
March 1968, The Journal of vitaminology,
M S Salvarrey, and J J Cazzulo, and J J Cannata
October 1984, Journal of bacteriology,
M S Salvarrey, and J J Cazzulo, and J J Cannata
March 1982, Journal of bacteriology,
M S Salvarrey, and J J Cazzulo, and J J Cannata
February 1989, Journal of bacteriology,
M S Salvarrey, and J J Cazzulo, and J J Cannata
July 1984, Biochimica et biophysica acta,
M S Salvarrey, and J J Cazzulo, and J J Cannata
May 1977, The Biochemical journal,
M S Salvarrey, and J J Cazzulo, and J J Cannata
June 1990, Journal of bacteriology,
Copied contents to your clipboard!