Orienting-related eye-neck neurons of the medial ponto-bulbar reticular formation do not participate in horizontal canal-dependent vestibular reflexes of alert cats. 1995

T Kitama, and A Grantyn, and A Berthoz
Laboratoire de Physiologie de la Perception et de l'Action, C.N.R.S., Collège de France.

Ponto-bulbar reticular formation neurons, including identified reticulospinal neurons, were studied in alert, head-fixed cats. Orienting-related neurons of "eye-neck" type (ENNs) were selected on the basis of qualitative correlations of their discharges with visually triggered eye saccades and electromyographic activity (EMG) of dorsal neck muscles. It was tested whether ENNs participate both in visually triggered gaze shifts requiring eye-head coordination and in gaze-stabilizing movements, such as vestibulo-ocular and vestibulo-collic reflexes (VOR, VCR). Firing patterns were studied during passive sinusoidal rotation (0.2-1.0 Hz; 2.0-21.5 deg peak-to-peak) in the horizontal plane. Responses to electrical stimulation of the superior colliculus and the vestibular nerve were recorded to assess the convergence of tectal and vestibular synaptic inputs. The same methods were applied to a control sample of neurons with discharges apparently "unrelated" to orienting movements. ENNs did not show any modulation of firing rate correlated to compensatory VOR or VCR during passive sinusoidal rotations. Among "unrelated" cells, the fraction of modulated units was close to that reported for reticular neurons projecting in the medial reticulospinal tract. Phasic and sustained components of ENN bursts were associated with anticompensatory movements induced by rotation, such as quick phases, ocular beating field shift, and the increase of EMG activity in neck muscles acting in the direction of passive rotation. Monosynaptic excitation from the contralateral superior colliculus was observed in 92.3% of ENNs, but only 2 out of 17 tested showed an excitatory response to vestibular nerve stimulation. In the control group of "unrelated" neurons the proportions of monosynaptic tectal and excitatory vestibular nerve inputs were, respectively, 75.6 and 71.4%. It is concluded that ENNs are specifically related to active gaze shifts, derived from either visual or from head velocity inputs. Rhombencephalic connections of vestibular nuclei to these neurons appear to be quite weak. Parallel inputs from the mid- or forebrain must be assumed to explain their firing patterns during rotation-induced anticompensatory gaze shifts. Within the studied range of frequencies and amplitudes of passive rotation, ENNs did not participate in the vestibulo-collic reflex. It is therefore unlikely that reticular neurons controlling orienting eye-neck synergies act also as a premotor pathway for gaze-stabilizing movements.

UI MeSH Term Description Entries
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D009334 Neck Muscles The neck muscles consist of the platysma, splenius cervicis, sternocleidomastoid(eus), longus colli, the anterior, medius, and posterior scalenes, digastric(us), stylohyoid(eus), mylohyoid(eus), geniohyoid(eus), sternohyoid(eus), omohyoid(eus), sternothyroid(eus), and thyrohyoid(eus). Muscle, Neck,Muscles, Neck,Neck Muscle
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009801 Oculomotor Muscles The muscles that move the eye. Included in this group are the medial rectus, lateral rectus, superior rectus, inferior rectus, inferior oblique, superior oblique, musculus orbitalis, and levator palpebrae superioris. Extraocular Muscles,Extraocular Rectus Muscles,Inferior Oblique Extraocular Muscle,Inferior Oblique Muscles,Levator Palpebrae Superioris,Musculus Orbitalis,Oblique Extraocular Muscles,Oblique Muscle, Inferior,Oblique Muscle, Superior,Oblique Muscles, Extraocular,Rectus Muscles, Extraocular,Superior Oblique Extraocular Muscle,Superior Oblique Muscle,Extraocular Muscle,Extraocular Muscle, Oblique,Extraocular Muscles, Oblique,Extraocular Oblique Muscle,Extraocular Oblique Muscles,Extraocular Rectus Muscle,Inferior Oblique Muscle,Muscle, Oculomotor,Muscles, Oculomotor,Oblique Extraocular Muscle,Oblique Muscle, Extraocular,Oblique Muscles, Inferior,Oblique Muscles, Superior,Oculomotor Muscle,Rectus Muscle, Extraocular,Superior Oblique Muscles
D009949 Orientation Awareness of oneself in relation to time, place and person. Cognitive Orientation,Mental Orientation,Psychological Orientation,Cognitive Orientations,Mental Orientations,Orientation, Cognitive,Orientation, Mental,Orientation, Psychological,Orientations,Orientations, Cognitive,Orientations, Mental,Orientations, Psychological,Psychological Orientations
D011149 Pons The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons
D012027 Reflex, Vestibulo-Ocular A reflex wherein impulses are conveyed from the cupulas of the SEMICIRCULAR CANALS and from the OTOLITHIC MEMBRANE of the SACCULE AND UTRICLE via the VESTIBULAR NUCLEI of the BRAIN STEM and the median longitudinal fasciculus to the OCULOMOTOR NERVE nuclei. It functions to maintain a stable retinal image during head rotation by generating appropriate compensatory EYE MOVEMENTS. Vestibulo-Ocular Reflex,Reflex, Vestibuloocular,Reflexes, Vestibo-Ocular,Reflexes, Vestibuloocular,Reflex, Vestibulo Ocular,Reflexes, Vestibo Ocular,Vestibo-Ocular Reflexes,Vestibulo Ocular Reflex,Vestibuloocular Reflex,Vestibuloocular Reflexes
D012154 Reticular Formation A region extending from the PONS & MEDULLA OBLONGATA through the MESENCEPHALON, characterized by a diversity of neurons of various sizes and shapes, arranged in different aggregations and enmeshed in a complicated fiber network. Formation, Reticular,Formations, Reticular,Reticular Formations
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat

Related Publications

T Kitama, and A Grantyn, and A Berthoz
June 2003, Journal of neurophysiology,
T Kitama, and A Grantyn, and A Berthoz
October 1971, Brain research,
T Kitama, and A Grantyn, and A Berthoz
January 1983, Experimental brain research,
T Kitama, and A Grantyn, and A Berthoz
January 1982, Experimental brain research,
Copied contents to your clipboard!