Afferent excitation of human motor cortex as revealed by enhancement of direct cortico-spinal actions on motoneurones. 1995

F Baldissera, and L Leocani
Istituto di Fisiologia Umana II, Università di Milano, Italy.

Changes in motor cortex excitability induced by somatosensory afferences were evaluated in 5 subjects by testing how the short-latency cortico-spinal effects evoked by transcranial magnetic stimulation in flexor carpi radialis (FCR) motoneurones were influenced by volleys in median nerve afferent fibres. Transcranial magnetic stimulation induced two facilitatory peaks on FCR H reflex, the first at a conditioning-test interval of about -3 msec and the second at msec, separated by a phase of inhibition. If an electric shock to the median nerve at the wrist, 0.8-1 x motor threshold (MT) for thenar muscles, preceded the cortical stimulus by 18-25 msec, an increase in size of both facilitatory peaks was observed. The increase was partly due to a direct action of the median nerve volley on motoneurones. When this contribution was subtracted, two peaks of additional facilitation resulted as the effect of combined conditioning. Additional facilitation was present even during the short-lasting phase ascribed to monosynaptic cortico-spinal excitation of motoneurones, i.e., the first millisecond of the earliest facilitatory peak. This result indicates that cortical responsiveness to magnetic stimulation had been enhanced by the peripheral stimulus. The time course of the excitability changes in motor cortex was compared with the cortical somatosensory evoked potentials (SEPs) induced by the same peripheral stimulus. Additional facilitation was present immediately after the N20 peak of SEPs and lasted 8-10 msec. Additional facilitation had the same threshold as N20 (0.6 x MT) and grew in parallel with it when grading the afferent stimulus up to 1 MT.

UI MeSH Term Description Entries
D008280 Magnetics The study of MAGNETIC PHENOMENA. Magnetic
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D005073 Evoked Potentials, Somatosensory The electric response evoked in the CEREBRAL CORTEX by stimulation along AFFERENT PATHWAYS from PERIPHERAL NERVES to CEREBRUM. Somatosensory Evoked Potentials,Evoked Potential, Somatosensory,Somatosensory Evoked Potential
D006181 H-Reflex A monosynaptic reflex elicited by stimulating a nerve, particularly the tibial nerve, with an electric shock. H Reflex,H-Reflexes,H Reflexes,Reflex, H
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

F Baldissera, and L Leocani
April 1990, The Journal of physiology,
F Baldissera, and L Leocani
June 1976, The Journal of physiology,
F Baldissera, and L Leocani
January 1990, Electroencephalography and clinical neurophysiology. Supplement,
F Baldissera, and L Leocani
December 1970, Acta physiologica Scandinavica,
F Baldissera, and L Leocani
June 1982, European journal of pharmacology,
Copied contents to your clipboard!