Disruption of DNA-PK in Ku80 mutant xrs-6 and the implications in DNA double-strand break repair. 1996

F Chen, and S R Peterson, and M D Story, and D J Chen
Life Sciences Division, Los Alamos National Laboratory, New Mexico 87545, USA.

The Chinese hamster ovary (CHO) mutant cell line xrs-6C is highly sensitive to radiation and is deficient in DNA double-strand break (DSB) repair. The repair defect of xrs-6C is complemented by the human DSB repair gene designated as XRCC5. This gene was recently identified as Ku80, which encodes the human autoantigen protein Ku p80. Ku80 protein forms heterodimer with the Ku70 subunit to form a complex that possesses a DNA end-binding activity. Ku70/Ku80 heterodimer can recruit the catalytic p350 subunit of the DNA-dependent protein kinase. It is demonstrated here that, while the Ku70 mRNA expression is normal in the xrs-6C mutant, Ku70 protein is undetectable. However, introduction of human Ku80 gene into the mutant lead to increased expression of Ku70 protein and restored Ku70 binding to DNA ends, suggesting that mutation of the Ku80 gene affected the formation of Ku70/Ku80 dimers and the stability of the Ku70 protein. We also demonstrated that, although p350 protein expression in the mutants was unaffected, the capacity of p350 to bind to DNA ends was impaired in the mutants. After introduction of the human Ku80 into the mutant, the association of p350 with DNA end was restored, accompanied by recovery in cell survival and DNA double-strand break repair. The results in this report show that mutation of the Ku80 gene disrupts formation of the Ku70/Ku80 dimer and compromises the ability of Ku protein to recruit the DNA-PK p350 subunit to DNA double-strand breaks, causing a dysfunction of DNA DSB repair in the cell.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster

Related Publications

F Chen, and S R Peterson, and M D Story, and D J Chen
December 2001, Journal of radiation research,
F Chen, and S R Peterson, and M D Story, and D J Chen
November 1992, International journal of radiation biology,
F Chen, and S R Peterson, and M D Story, and D J Chen
March 1995, Cancer research,
F Chen, and S R Peterson, and M D Story, and D J Chen
January 1995, Proceedings of the National Academy of Sciences of the United States of America,
F Chen, and S R Peterson, and M D Story, and D J Chen
August 1996, Proceedings of the National Academy of Sciences of the United States of America,
F Chen, and S R Peterson, and M D Story, and D J Chen
January 2021, Nature structural & molecular biology,
F Chen, and S R Peterson, and M D Story, and D J Chen
November 1997, The EMBO journal,
F Chen, and S R Peterson, and M D Story, and D J Chen
October 1995, Trends in biochemical sciences,
F Chen, and S R Peterson, and M D Story, and D J Chen
April 2024, Nucleic acids research,
F Chen, and S R Peterson, and M D Story, and D J Chen
October 1999, Current biology : CB,
Copied contents to your clipboard!