DNA gyrase gyrA mutations in quinolone-resistant clinical isolates of Pseudomonas aeruginosa. 1995

M Yonezawa, and M Takahata, and N Matsubara, and Y Watanabe, and H Narita
Research Laboratories, Toyama Chemical Co., Ltd, Japan.

The mutations in the quinolone resistance-determining region of the gyrA gene from clinical isolates of Pseudomonas aeruginosa were determined by DNA sequencing. The strains were isolated in 1989 and 1993. No mutations were detected in the clinical isolates in 1989, while five types of mutations were identified in the isolates in 1993. These mutations were as follows: group 1, a Thr residue to an Ile residue at position 83 (Thr-83-Ile); group 2, Asp-87-Asn; group 3, Thr-83-Ile and Asp-87-Gly; group 4, Thr-83-Ile and Asp-87-Asn; group 5, Thr-83-Ile and Asp-87-His. Three types of double mutations (groups 3, 4, and 5) have not been described previously. These mutations were homologous to the Ser-83-Leu, Asp-87-Asn, and Asp-87-Gly changes observed in Escherichia coli. Thus, DNA gyrase A subunit mutations are implicated in resistance to quinolones in P. aeruginosa as well as E. coli.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D011552 Pseudomonas Infections Infections with bacteria of the genus PSEUDOMONAS. Infections, Pseudomonas,Pseudomonas aeruginosa Infection,Infection, Pseudomonas,Pseudomonas Infection,Pseudomonas aeruginosa Infections
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004250 DNA Topoisomerases, Type II DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex. DNA Topoisomerase (ATP-Hydrolysing),DNA Topoisomerase II,DNA Topoisomerase II alpha,DNA Topoisomerase II beta,DNA Type 2 Topoisomerase,TOP2A Protein,TOP2B Protein,Topoisomerase II,Topoisomerase II alpha,Topoisomerase II beta,Type II DNA Topoisomerase,alpha, Topoisomerase II,beta, Topoisomerase II
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

M Yonezawa, and M Takahata, and N Matsubara, and Y Watanabe, and H Narita
September 1994, Antimicrobial agents and chemotherapy,
M Yonezawa, and M Takahata, and N Matsubara, and Y Watanabe, and H Narita
February 1995, Antimicrobial agents and chemotherapy,
M Yonezawa, and M Takahata, and N Matsubara, and Y Watanabe, and H Narita
February 2013, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy,
M Yonezawa, and M Takahata, and N Matsubara, and Y Watanabe, and H Narita
January 1998, Antimicrobial agents and chemotherapy,
M Yonezawa, and M Takahata, and N Matsubara, and Y Watanabe, and H Narita
June 1990, Antimicrobial agents and chemotherapy,
M Yonezawa, and M Takahata, and N Matsubara, and Y Watanabe, and H Narita
October 1997, Antimicrobial agents and chemotherapy,
M Yonezawa, and M Takahata, and N Matsubara, and Y Watanabe, and H Narita
August 2022, Microorganisms,
M Yonezawa, and M Takahata, and N Matsubara, and Y Watanabe, and H Narita
January 2005, Polish journal of microbiology,
M Yonezawa, and M Takahata, and N Matsubara, and Y Watanabe, and H Narita
January 1999, Journal of medical microbiology,
M Yonezawa, and M Takahata, and N Matsubara, and Y Watanabe, and H Narita
May 2003, International journal of antimicrobial agents,
Copied contents to your clipboard!