Alterations of Ca2+/calmodulin-dependent protein kinase II and its messenger RNA in the rat hippocampus following normo- and hypothermic ischemia. 1995

B R Hu, and F Kamme, and T Wieloch
Department of Neurobiology, Lund University Hospital, Sweden.

The change in the subcellular distribution of Ca2+/calmodulin-dependent protein kinase II was studied in the rat hippocampus following normothermic and hypothermic transient cerebral ischemia of 15 min duration. A decrease in immunostaining of Ca2+/calmodulin-dependent protein kinase II was observed at 1 h of reperfusion which persisted until cell death in the CA1 region. In the CA3 and dentate gyrus areas immunostaining recovered at one to three days of reperfusion. The CA2+/calmodulin-dependent protein kinase II was translocated to synaptic junctions during ischemia and reperfusion which could be due to a persistent change in the intracellular calcium ion homeostasis. The expression of the messenger RNA of the alpha-subunit of Ca2+/calmodulin-dependent protein kinase II decreased in the entire hippocampus during reperfusion, and was most marked in the dentate gyrus at 12 h of reperfusion. This decrease could be a feedback downregulation of the mRNA due to increased Ca2+/calmodulin-dependent protein kinase II activation. Intraischemic hypothermia protected against ischemic neuronal damage and attenuated the ischemia-induced decrease of Ca2+/calmodulin-dependent protein kinase II immunostaining in all hippocampal regions. Hypothermia also reduced the translocation of Ca2+/calmodulin-dependent protein kinase II and restored Ca2+/calmodulin-dependent protein kinase II alpha messenger RNA after ischemia. The data suggest that ischemia leads to an aberrant Ca2+/calmodulin-dependent protein kinase II mediated signal transduction in the CA1 region, which is important for the development of delayed neuronal damage. Hypothermia enhances the restoration of the Ca2+/calmodulin-dependent protein kinase II mediated cell signalling.

UI MeSH Term Description Entries
D007035 Hypothermia Lower than normal body temperature, especially in warm-blooded animals. Hypothermia, Accidental,Accidental Hypothermia,Accidental Hypothermias,Hypothermias,Hypothermias, Accidental
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

B R Hu, and F Kamme, and T Wieloch
January 1996, Acta neurobiologiae experimentalis,
B R Hu, and F Kamme, and T Wieloch
January 1997, Sheng li ke xue jin zhan [Progress in physiology],
B R Hu, and F Kamme, and T Wieloch
January 1990, Seikagaku. The Journal of Japanese Biochemical Society,
B R Hu, and F Kamme, and T Wieloch
February 2008, The Journal of biological chemistry,
B R Hu, and F Kamme, and T Wieloch
June 1994, Journal of biochemistry,
Copied contents to your clipboard!