Tumor necrosis factor alpha upregulates human microglial cell production of interleukin-10 in vitro. 1995

W S Sheng, and S Hu, and F H Kravitz, and P K Peterson, and C C Chao
Neuroimmunobiology and Host Defense Laboratory, Minneapolis Medical Research Foundation, Minnesota 55404, USA.

Interleukin (IL)-10 appears to play an important regulatory role in the systemic inflammatory response; however, production of IL-10 within the human central nervous system has not been described. Using cultures of human fetal microglial cells, the resident macrophages of the brain, we investigated the production and regulation of bioactive IL-10. Lipopolysaccharide stimulated acute release of tumor necrosis factor (TNF)-alpha (peak by 8 h) and delayed production of IL-10 (over a 48-h period) in microglial cell cultures. Treatment of microglial cell cultures with TNF-alpha and IL-6 resulted in a dose-dependent release of IL-10. These cytokines also induced expression of IL-10 mRNA. Treatment of microglial cell cultures with IL-10 markedly inhibited TNF-alpha and IL-6 production. These findings suggest that during inflammation within the brain, acute release of TNF-alpha and IL-6 by activated microglia could promote subsequent release of IL-10, which functions to minimize the potential neurotoxic effects of proinflammatory cytokines.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D016753 Interleukin-10 A cytokine produced by a variety of cell types, including T-LYMPHOCYTES; MONOCYTES; DENDRITIC CELLS; and EPITHELIAL CELLS that exerts a variety of effects on immunoregulation and INFLAMMATION. Interleukin-10 combines with itself to form a homodimeric molecule that is the biologically active form of the protein. IL-10,CSIF-10,Cytokine Synthesis Inhibitory Factor,IL10,Interleukin 10
D017628 Microglia The third type of glial cell, along with astrocytes and oligodendrocytes (which together form the macroglia). Microglia vary in appearance depending on developmental stage, functional state, and anatomical location; subtype terms include ramified, perivascular, ameboid, resting, and activated. Microglia clearly are capable of phagocytosis and play an important role in a wide spectrum of neuropathologies. They have also been suggested to act in several other roles including in secretion (e.g., of cytokines and neural growth factors), in immunological processing (e.g., antigen presentation), and in central nervous system development and remodeling. Microglial Cell,Cell, Microglial,Microglial Cells,Microglias

Related Publications

W S Sheng, and S Hu, and F H Kravitz, and P K Peterson, and C C Chao
February 1996, The Journal of clinical investigation,
W S Sheng, and S Hu, and F H Kravitz, and P K Peterson, and C C Chao
October 1996, The Journal of clinical investigation,
W S Sheng, and S Hu, and F H Kravitz, and P K Peterson, and C C Chao
March 2005, Regulatory peptides,
W S Sheng, and S Hu, and F H Kravitz, and P K Peterson, and C C Chao
January 1991, Annals of the New York Academy of Sciences,
W S Sheng, and S Hu, and F H Kravitz, and P K Peterson, and C C Chao
December 1996, Infection and immunity,
W S Sheng, and S Hu, and F H Kravitz, and P K Peterson, and C C Chao
January 1997, Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology,
W S Sheng, and S Hu, and F H Kravitz, and P K Peterson, and C C Chao
February 2010, The journal of obstetrics and gynaecology research,
W S Sheng, and S Hu, and F H Kravitz, and P K Peterson, and C C Chao
June 1989, European journal of immunology,
W S Sheng, and S Hu, and F H Kravitz, and P K Peterson, and C C Chao
November 1997, Blood,
Copied contents to your clipboard!