Inhibition of human neutrophil function by tolfenamic acid involves inhibition of Ca2+ influx. 1995

H Kankaanranta, and H Wuorela, and E Siltaloppi, and P Vuorinen, and H Vapaatalo, and E Moilanen
Medical School, University of Tampere, Finland.

The present work was designed to study the pharmacological control of the receptor-mediated activation of human neutrophils by tolfenamic acid (2(-)[(3-chloro-2-methylphenyl)-amino]benzoic acid). Tolfenamic acid inhibited in a concentration-dependent manner the degranulation response and Ca2+ influx in neutrophils activated either by the chemotactic peptide fMLP (N-formyl-methionyl-leucylphenylalanine) or Ca2+ ionophore A23187 (calcimycin). When fMLP was used to activate neutrophils, tolfenamic acid (30 microM) reduced Ca2+ influx by 50% and degranulation by 20%. A23187-triggered Ca2+ influx and degranulation were inhibited by 60% and 40%, respectively, by 30 microM tolfenamic acid. Tolfenamic acid did not inhibit the release of Ca2+ from intracellular stores induced either by fMLP or A23187. To confirm the inhibition of receptor-mediated cation influx by tolfenamic acid, the agonist induced Mn2+ influx was studied in Ca2+ free medium. Tolfenamic acid (10-30 microM) reduced fMLP-stimulated Mn2+ influx in neutrophils in a concentration-dependent manner. The simultaneous Ca2+ release from intracellular stores was not affected. Protein kinase C activity in sonicated human neutrophils and the purified enzyme from rat brain were inhibited by the protein kinase inhibitor H-7 (1-(5-isoquinolinylsulfonyl)-2-methylpiperazine) but not by tolfenamic acid. Both failed to inhibit neutrophil degranulation induced by phorbol myristate acetate, a protein kinase C activator. Tolfenamic acid (100 microM) increased the cellular cAMP levels up to 1.3-fold in the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. No effects on cellular cGMP levels were found.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007476 Ionophores Chemical agents that increase the permeability of biological or artificial lipid membranes to specific ions. Most ionophores are relatively small organic molecules that act as mobile carriers within membranes or coalesce to form ion permeable channels across membranes. Many are antibiotics, and many act as uncoupling agents by short-circuiting the proton gradient across mitochondrial membranes. Ionophore
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009240 N-Formylmethionine Leucyl-Phenylalanine A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated. F-Met-Leu-Phe,N-Formyl-Methionyl-Leucyl-Phenylalanine,Formylmet-Leu-Phe,Formylmethionyl Peptide,Formylmethionyl-Leucyl-Phenylalanine,Formylmethionylleucylphenylalanine,N-Formylated Peptide,N-formylmethionyl-leucyl-phenylalanine,fMet-Leu-Phe,F Met Leu Phe,Formylmet Leu Phe,Formylmethionyl Leucyl Phenylalanine,Leucyl-Phenylalanine, N-Formylmethionine,N Formyl Methionyl Leucyl Phenylalanine,N Formylated Peptide,N Formylmethionine Leucyl Phenylalanine,N formylmethionyl leucyl phenylalanine,Peptide, Formylmethionyl,Peptide, N-Formylated,fMet Leu Phe
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D003864 Depression, Chemical The decrease in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Depression,Chemical Depressions,Depressions, Chemical
D005966 Glucuronidase Endo-beta-D-Glucuronidase,Endoglucuronidase,Exo-beta-D-Glucuronidase,beta-Glucuronidase,Endo beta D Glucuronidase,Exo beta D Glucuronidase,beta Glucuronidase

Related Publications

H Kankaanranta, and H Wuorela, and E Siltaloppi, and P Vuorinen, and H Vapaatalo, and E Moilanen
September 1976, Science (New York, N.Y.),
H Kankaanranta, and H Wuorela, and E Siltaloppi, and P Vuorinen, and H Vapaatalo, and E Moilanen
March 1996, Cellular immunology,
H Kankaanranta, and H Wuorela, and E Siltaloppi, and P Vuorinen, and H Vapaatalo, and E Moilanen
January 1976, Scandinavian journal of rheumatology,
H Kankaanranta, and H Wuorela, and E Siltaloppi, and P Vuorinen, and H Vapaatalo, and E Moilanen
January 1994, Pharmacology & toxicology,
H Kankaanranta, and H Wuorela, and E Siltaloppi, and P Vuorinen, and H Vapaatalo, and E Moilanen
January 1999, Life sciences,
H Kankaanranta, and H Wuorela, and E Siltaloppi, and P Vuorinen, and H Vapaatalo, and E Moilanen
June 1989, Clinica chimica acta; international journal of clinical chemistry,
H Kankaanranta, and H Wuorela, and E Siltaloppi, and P Vuorinen, and H Vapaatalo, and E Moilanen
June 1999, Immunopharmacology,
H Kankaanranta, and H Wuorela, and E Siltaloppi, and P Vuorinen, and H Vapaatalo, and E Moilanen
October 2008, Inflammation research : official journal of the European Histamine Research Society ... [et al.],
H Kankaanranta, and H Wuorela, and E Siltaloppi, and P Vuorinen, and H Vapaatalo, and E Moilanen
May 1995, Molecular pharmacology,
H Kankaanranta, and H Wuorela, and E Siltaloppi, and P Vuorinen, and H Vapaatalo, and E Moilanen
December 2017, Cell reports,
Copied contents to your clipboard!