Altered GAP-43 immunoreactivity in regenerating sciatic nerve of diabetic rats. 1996

C Pekiner, and E W Dent, and R E Roberts, and K F Meiri, and W G McLean
Department of Pharmacology and Therapeutics, University of Liverpool, U.K.

Experimental diabetes in the rat is associated with impaired axon regeneration. Successful regeneration depends on the construction of axonal growth cones and establishment of appropriate target connections. The growth-associated protein (GAP)-43 is a major component of the axonal growth cone, and its synthesis and axonal transport are markedly increased during regeneration. The purpose of this study was to determine the effect of experimental diabetes on the synthesis and axonal transport of GAP-43 in regenerating sciatic nerves. Rats were rendered diabetic with 50 mg/kg streptozotocin i.p. Four weeks later, the rats were anesthetized, and one sciatic nerve was crushed to induce regeneration. After 2 weeks, nerves were ligated, and 6 h later, nerve pieces proximal to the ligature and dorsal root ganglia were removed, and proteins were separated by PAGE. Western blots of gels were probed with antibody 10E8/E7 against GAP-43. The presence of GAP-43 was confirmed by immunohistochemistry of nerve sections. Densitometric analysis of the blots showed a 45% reduction in native GAP-43 immunoreactivity in nerve pieces proximal to the ligature (P < 0.05; n = 7). Northern blots of total RNA extracted from pooled dorsal root ganglia were probed with a 32P-radiolabeled cDNA probe for GAP-43. There was no significant difference in the amount of GAP-43 mRNA between diabetic and nondiabetic rats. Immunohistochemistry of sciatic nerve confirmed the reduction in GAP-43 immunoreactivity. We conclude that a defect in turnover or axonal transport of GAP-43 may contribute to the impaired peripheral nerve regeneration in diabetes.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D009409 Nerve Crush Treatment of muscles and nerves under pressure as a result of crush injuries. Crush, Nerve
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D005260 Female Females
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001370 Axonal Transport The directed transport of ORGANELLES and molecules along nerve cell AXONS. Transport can be anterograde (from the cell body) or retrograde (toward the cell body). (Alberts et al., Molecular Biology of the Cell, 3d ed, pG3) Axoplasmic Flow,Axoplasmic Transport,Axoplasmic Streaming,Axonal Transports,Axoplasmic Flows,Axoplasmic Transports,Streaming, Axoplasmic,Transport, Axonal,Transport, Axoplasmic,Transports, Axonal,Transports, Axoplasmic
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

C Pekiner, and E W Dent, and R E Roberts, and K F Meiri, and W G McLean
April 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C Pekiner, and E W Dent, and R E Roberts, and K F Meiri, and W G McLean
February 2018, Scientific reports,
C Pekiner, and E W Dent, and R E Roberts, and K F Meiri, and W G McLean
December 1985, Brain research,
C Pekiner, and E W Dent, and R E Roberts, and K F Meiri, and W G McLean
June 1995, The Journal of comparative neurology,
C Pekiner, and E W Dent, and R E Roberts, and K F Meiri, and W G McLean
December 1995, Brain research,
C Pekiner, and E W Dent, and R E Roberts, and K F Meiri, and W G McLean
December 1993, Neuroscience,
C Pekiner, and E W Dent, and R E Roberts, and K F Meiri, and W G McLean
January 1991, Experimental brain research,
C Pekiner, and E W Dent, and R E Roberts, and K F Meiri, and W G McLean
October 1996, Journal of neurocytology,
C Pekiner, and E W Dent, and R E Roberts, and K F Meiri, and W G McLean
April 1996, Brain research. Molecular brain research,
C Pekiner, and E W Dent, and R E Roberts, and K F Meiri, and W G McLean
April 1963, Acta neuropathologica,
Copied contents to your clipboard!