Parathyroid hormone (PTH)-related protein(1-36) is equipotent to PTH(1-34) in humans. 1996

M Everhart-Caye, and S E Inzucchi, and J Guinness-Henry, and M A Mitnick, and A F Stewart
Division of Endocrinology, Veterans Administration Medical Center, West Haven, Connecticut 06516, USA.

Humoral hypercalcemia of malignancy (HHM) results from the production of PTH-related protein (PTHrP) by human tumors. One previous study has reported the results of human (h) PTHrP(1-34) infusion into humans. In that report, hPTHrP(1-34) was found to be qualitatively similar to but 3- to 10-fold less potent than hPTH(1-34). Because hPTHrP(1-36) and not hPTH(1-34) is likely to be the actual amino-terminal secretory form of PTHrP, and because this previously reported lack of potency was unexpected, we repeated these studies using hPTHrP(1-36) and compared the results with those obtained with hPTH(1-34). Healthy subjects (n = 30) were infused over 6 h with either vehicle alone, hPTH(1-34) at a dose of 8 pmol/kg.h, or hPTHrP(1-36) at doses of 8 or 80 pmol/kg.h. Both hPTH(1-34) and hPTHrP(1-36) caused an increase in serum ionized calcium, a decrease in serum phosphorus, an increase in the fractional excretion of phosphorus, a decrease in the tubular maximum for phosphorus, an increase in nephrogenous cAMP excretion, and suppression of endogenous PTH(1-84). Unlike events observed in HHM, hPTHrP(1-36) induced an increase in plasma 1,25-dihydroxyvitamin D2. In addition, fractional excretion of calcium was reduced by both hPTH(1-34) and hPTHrP(1-36). In their actions on serum calcium, renal calcium and phosphorus handling, and nephrogenous cAMP excretion, hPTHrP(1-36) and hPTH(1-34) appeared equivalent in potency. These studies indicate that short-term infusion of hPTHrP(1-36) into humans reproduces most but not all of the features of HHM. In contrast to the reported findings with hPTHrP(1-34), we found the potency of hPTHrP(1-36) to be comparable with that of hPTH(1-34) in vivo in humans. In addition, unlike the situation in HHM, hPTHrP(1-36) produces an increment in plasma 1,25-dihydroxyvitamin D2. Finally, hPTHrP(1-36) has been shown for the first time to have anticalciuric effects in humans. This would suggest that, in addition to osteoclastic bone resorption, tubular reabsorbtion of calcium by hPTHrP may contribute to the hypercalcemia in patients with HHM.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D010281 Parathyroid Hormone A polypeptide hormone (84 amino acid residues) secreted by the PARATHYROID GLANDS which performs the essential role of maintaining intracellular CALCIUM levels in the body. Parathyroid hormone increases intracellular calcium by promoting the release of CALCIUM from BONE, increases the intestinal absorption of calcium, increases the renal tubular reabsorption of calcium, and increases the renal excretion of phosphates. Natpara,PTH (1-84),PTH(1-34),Parathormone,Parathyrin,Parathyroid Hormone (1-34),Parathyroid Hormone (1-84),Parathyroid Hormone Peptide (1-34),Hormone, Parathyroid
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010758 Phosphorus A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions. Black Phosphorus,Phosphorus-31,Red Phosphorus,White Phosphorus,Yellow Phosphorus,Phosphorus 31,Phosphorus, Black,Phosphorus, Red,Phosphorus, White,Phosphorus, Yellow
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

M Everhart-Caye, and S E Inzucchi, and J Guinness-Henry, and M A Mitnick, and A F Stewart
January 1995, The Journal of clinical endocrinology and metabolism,
M Everhart-Caye, and S E Inzucchi, and J Guinness-Henry, and M A Mitnick, and A F Stewart
March 1997, The Journal of clinical endocrinology and metabolism,
M Everhart-Caye, and S E Inzucchi, and J Guinness-Henry, and M A Mitnick, and A F Stewart
August 1992, The Journal of clinical endocrinology and metabolism,
M Everhart-Caye, and S E Inzucchi, and J Guinness-Henry, and M A Mitnick, and A F Stewart
January 1993, Experimental and clinical endocrinology,
M Everhart-Caye, and S E Inzucchi, and J Guinness-Henry, and M A Mitnick, and A F Stewart
August 1997, The Journal of clinical endocrinology and metabolism,
M Everhart-Caye, and S E Inzucchi, and J Guinness-Henry, and M A Mitnick, and A F Stewart
October 1998, Endocrinology,
M Everhart-Caye, and S E Inzucchi, and J Guinness-Henry, and M A Mitnick, and A F Stewart
October 1989, Endocrinology,
M Everhart-Caye, and S E Inzucchi, and J Guinness-Henry, and M A Mitnick, and A F Stewart
April 2001, The Journal of clinical endocrinology and metabolism,
M Everhart-Caye, and S E Inzucchi, and J Guinness-Henry, and M A Mitnick, and A F Stewart
August 1999, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
M Everhart-Caye, and S E Inzucchi, and J Guinness-Henry, and M A Mitnick, and A F Stewart
August 2000, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
Copied contents to your clipboard!