Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo. 1996

P Paglia, and C Chiodoni, and M Rodolfo, and M P Colombo
Division of Experimental Oncology D, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milano, Italy.

The priming of an immune response against a major histocompatibility complex class I-restricted antigen expressed by nonhematopoietic cells involves the transfer of that antigen to a host bone marrow-derived antigen presenting cell (APC) for presentation to CD8+ T lymphocytes. Dendritic cells (DC), as bone marrow-derived APC, are first candidates for presentation of tumor-associated antigens (TAA). The aim of this study was to see whether DC are able to prime in vivo antigen-specific cytotoxic T lymphocytes after exposure to a soluble protein antigen in vitro. Lacking a well-defined murine TAA, we took advantage of beta-galactosidase (beta-gal)-transduced tumor cell lines as a model in which beta-gal operationally functions as TAA. For in vivo priming both a DC line, transduced or not transduced with the gene coding for murine GM-CSF, and fresh bone marrow-derived DC (bm-DC), loaded in vitro with soluble beta-gal, were used. Priming with either granulocyte macrophage colony-stimulating factor-transduced DC line or fresh bm-DC but not with untransduced DC line generated CTL able to lyse beta-gal-transfected target cells. Furthermore, GM-CSF was necessary for the DC line to efficiently present soluble beta-gal as an H-2Ld-restricted peptide to a beta-gal-specific CTL clone. Data also show that a long-lasting immunity against tumor challenge can be induced using beta-gal-pulsed bm-DC as vaccine. These results indicate that effector cells can be recruited and activated in vivo by antigen-pulsed DC, providing an efficient immune reaction against tumors.

UI MeSH Term Description Entries
D007115 Immunization Schedule Schedule giving optimum times usually for primary and/or secondary immunization. Immunization Schedules,Schedule, Immunization,Schedules, Immunization
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D005260 Female Females

Related Publications

P Paglia, and C Chiodoni, and M Rodolfo, and M P Colombo
January 2005, Anticancer research,
P Paglia, and C Chiodoni, and M Rodolfo, and M P Colombo
May 2019, Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico,
P Paglia, and C Chiodoni, and M Rodolfo, and M P Colombo
August 2006, Zhongguo shi yan xue ye xue za zhi,
P Paglia, and C Chiodoni, and M Rodolfo, and M P Colombo
October 1995, Journal of immunology (Baltimore, Md. : 1950),
P Paglia, and C Chiodoni, and M Rodolfo, and M P Colombo
January 1997, Advances in experimental medicine and biology,
P Paglia, and C Chiodoni, and M Rodolfo, and M P Colombo
January 1987, Nature,
P Paglia, and C Chiodoni, and M Rodolfo, and M P Colombo
March 1994, European journal of immunology,
P Paglia, and C Chiodoni, and M Rodolfo, and M P Colombo
January 2004, Breast cancer research : BCR,
Copied contents to your clipboard!