A slowly inactivating potassium current in CA3 pyramidal cells of rat hippocampus in vitro. 1996

A Lüthi, and B H Gähwiler, and U Gerber
Brain Research Institute, University of Zürich, Switzerland.

The time- and voltage-dependent properties of a slowly inactivating K+ current were investigated by using the single-electrode current- and voltage-clamp recording technique in CA3 hippocampal cells of organotypic slice cultures. After a period of prolonged hyperpolarization, the onset of action-potential discharge in response to depolarizing current injection was delayed by several seconds. The conductances underlying this delay were identified in voltage-clamp recordings. A biphasically decaying outward current was evoked when the membrane potential was stepped back to -60 mV after a 30 sec period of hyperpolarization. The fast component was identified as the previously described D-current and was blocked by 100 microM 4-aminopyridine (4-AP). The slow component, which we refer to as IK(slow), appeared to be mediated by K+ ions, because its reversal potential shifted in a Nernstian manner with changes in extracellular K+ concentration. It decayed with a time constant of 7.5 sec and required a hyperpolarizing prepulse below -95 mV for 5.5 sec for 50% recovery from inactivation. IK(slow) was found to be voltage-dependent, with 50% activation occurring at -65 mV and 50% steady-state inactivation occurring at -84 mV. It displayed minimal or no sensitivity to the K(+)-channel blockers 4-AP (0.1-5 mM), Cs+ (1 mM), tetraethylammonium (10-50 mM), Ba2+ (1 mM), dendrotoxin-alpha (5-10 microM), charybdotoxin (0.5-2.5 microM), or glibenclamide (5-10 microM) and was not affected by preventing increases in intracellular Ca2+ concentration with Ca2+ chelators. IK(slow) was reduced by activation of metabotropic glutamatergic and cholinergic receptors. In summary, the biophysical characteristics of IK(slow) suggest a role in determining discharge onset after a period of membrane hyperpolarization, and its modulation by G-protein-coupled receptors reveals an additional function for these receptors in the control of cellular excitability.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009116 Muscarine A toxic alkaloid found in Amanita muscaria (fly fungus) and other fungi of the Inocybe species. It is the first parasympathomimetic substance ever studied and causes profound parasympathetic activation that may end in convulsions and death. The specific antidote is atropine.
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D015761 4-Aminopyridine One of the POTASSIUM CHANNEL BLOCKERS with secondary effect on calcium currents which is used mainly as a research tool and to characterize channel subtypes. 4-Aminopyridine Sustained Release,Dalfampridine,Fampridine-SR,Pymadine,VMI-103,4 Aminopyridine,4 Aminopyridine Sustained Release,Fampridine SR,Sustained Release, 4-Aminopyridine,VMI 103,VMI103
D016210 Methacholine Chloride A quaternary ammonium parasympathomimetic agent with the muscarinic actions of ACETYLCHOLINE. It is hydrolyzed by ACETYLCHOLINESTERASE at a considerably slower rate than ACETYLCHOLINE and is more resistant to hydrolysis by nonspecific CHOLINESTERASES so that its actions are more prolonged. It is used as a parasympathomimetic bronchoconstrictor agent and as a diagnostic aid for bronchial asthma. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1116) Methacholine,2-(Acetyloxy)-N,N,N-trimethyl-1-propanaminium Chloride,Acetyl-2-methylcholine Chloride,Acetyl-beta-methacholine Chloride,Acetyl-beta-methylcholine,Mecholine,Mecholyl,Provocholine,Provokit,Acetyl 2 methylcholine Chloride,Acetyl beta methacholine Chloride,Acetyl beta methylcholine,Chloride, Methacholine

Related Publications

A Lüthi, and B H Gähwiler, and U Gerber
September 2006, Journal of neurophysiology,
A Lüthi, and B H Gähwiler, and U Gerber
June 2007, The Journal of physiology,
A Lüthi, and B H Gähwiler, and U Gerber
April 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A Lüthi, and B H Gähwiler, and U Gerber
September 1980, Brain research,
A Lüthi, and B H Gähwiler, and U Gerber
April 2001, Brain research. Developmental brain research,
A Lüthi, and B H Gähwiler, and U Gerber
August 1995, The Journal of physiology,
A Lüthi, and B H Gähwiler, and U Gerber
January 1990, Proceedings of the Royal Society of London. Series B, Biological sciences,
A Lüthi, and B H Gähwiler, and U Gerber
August 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A Lüthi, and B H Gähwiler, and U Gerber
February 1992, Visual neuroscience,
A Lüthi, and B H Gähwiler, and U Gerber
January 2020, PloS one,
Copied contents to your clipboard!