An unusually long-lived antisense RNA in plasmid copy number control: in vivo RNAs encoded by the streptococcal plasmid pIP501. 1996

S Brantl, and E G Wagner
Institut für Molekularbiologie Friedrich-Schiller-Universität Jena, Germany.

The main regulator of pIP501 replication is an antisense RNA (RNAIII) that induces transcriptional attenuation of the essential RNAII. Previous studies identified the termination point in vivo and demonstrated attenuation in vitro. This in vivo analysis confirms the appearance of attenuated RNAII dependent on RNAIII. Half-lives and intracellular levels of RNAII and RNAIII were determined: in a Bacillus subtilis cell harboring a wild-type pIP501 plasmid, approximately 50 molecules RNAII and 1000 to 2000 molecules of RNAIII were measured, respectively. The half-life of RNAII was in the range of that of other target RNAs, whereas that of RNAIII (approximately 30 minutes) was unusually long, representing a so far unprecedented case of a metabolically stable antisense RNA regulating plasmid copy number. Long antisense RNA half-life is predicted to yield sluggish control and instability of maintenance. We propose a model for how plasmid pIP501 may avoid this problem by using both the repressor CopR and the antisense RNAIII for control. Four stem-loop mutants of RNAII/RNAIII with elevated copy numbers were characterized for in vitro antisense/target RNA binding, RNAIII half-life, incompatibility, and attenuation in vivo. Two classes were found: interaction mutants and half-life mutants. The former suggest a key function for loop LIII of RNAIII as recognition loop in the primary steps of RNAII/RNAIII interaction.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D013291 Streptococcus A genus of gram-positive, coccoid bacteria whose organisms occur in pairs or chains. No endospores are produced. Many species exist as commensals or parasites on man or animals with some being highly pathogenic. A few species are saprophytes and occur in the natural environment.

Related Publications

S Brantl, and E G Wagner
February 1992, Nucleic acids research,
S Brantl, and E G Wagner
August 2014, Microbiology spectrum,
S Brantl, and E G Wagner
October 1981, Proceedings of the National Academy of Sciences of the United States of America,
S Brantl, and E G Wagner
April 2007, Current opinion in microbiology,
Copied contents to your clipboard!