Structural and functional analysis of the fixLJ genes of Rhizobium leguminosarum biovar phaseoli CNPAF512. 1995

I D'hooghe, and J Michiels, and K Vlassak, and C Verreth, and F Waelkens, and J Vanderleyden
F. A. Janssens Laboratory of Genetics, Catholic University of Leuven, Heverlee, Belgium.

The fixLJ genes of Rhizobium leguminosarum biovar phaseoli CNPAF512 were identified by DNA hybridization of a genomic library with an internal fragment of the Rhizobium meliloti fixJ gene. The nucleotide sequence was determined and the corresponding amino acid sequence was aligned with the amino acid sequences of the FixL proteins of R. meliloti, Bradyrhizobium japonicum and Azorhizobium caulinodans. While the FixJ protein and the carboxy-terminal part of the FixL protein are highly homologous to the other FixL and FixJ proteins, the homology in the central heme-binding, oxygen-sensing domain and in the amino-terminal domain of FixL is very low. The R. leguminosarum bv. phaseoli FixL protein does not contain the heme-binding motif defined for the previously described FixL proteins. R. leguminosarum bv. phaseoli fixLJ and fixJ mutants were constructed. These mutants can still fix nitrogen, albeit at a reduced level. Expression analysis of nifA-gusA and nifH-gusA fusions in the constructed mutants revealed that the R. leguminosarum bv. phaseoli fixLJ genes are involved in microaerobic nifH expression but not in nifA expression.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006420 Hemeproteins Proteins that contain an iron-porphyrin, or heme, prosthetic group resembling that of hemoglobin. (From Lehninger, Principles of Biochemistry, 1982, p480) Hemeprotein,Heme Protein,Heme Proteins,Protein, Heme,Proteins, Heme
D000071677 Histidine Kinase A member of the transferase superfamily of proteins. In the activated state, protein-histidine kinase autophosphorylates at a histidine residue, subsequently transferring high-energy phosphoryl groups to an aspartate residue of the response-regulator domain, which results in a conformational shift in the effector domain. Histidine kinases mediate signal transduction in a wide range of processes involving cellular adaptation to environmental stress. Histidine Protein Kinase,Histone H4 Histidine Kinase,Protein Histidine Pros-Kinase,Protein Kinase (Histidine), Pros-Kinase,Protein-Histidine Kinase,Protein-Histidine Pros-Kinase,Protein-Histidine Tele-Kinase,Sensor Histidine Kinase,Histidine Kinase, Sensor,Histidine Pros-Kinase, Protein,Kinase, Histidine,Kinase, Histidine Protein,Kinase, Protein-Histidine,Kinase, Sensor Histidine,Pros-Kinase, Protein Histidine,Pros-Kinase, Protein-Histidine,Protein Histidine Kinase,Protein Histidine Pros Kinase,Protein Histidine Tele Kinase,Protein Kinase, Histidine,Tele-Kinase, Protein-Histidine
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012230 Rhizobiaceae A family of gram-negative bacteria which are saprophytes, symbionts, or plant pathogens. Bradyrhizobium lupini,Neorhizobium galegae,Rhizobium galegae,Rhizobium lupini

Related Publications

I D'hooghe, and J Michiels, and K Vlassak, and C Verreth, and F Waelkens, and J Vanderleyden
June 1990, Molecular microbiology,
I D'hooghe, and J Michiels, and K Vlassak, and C Verreth, and F Waelkens, and J Vanderleyden
August 1993, Nucleic acids research,
I D'hooghe, and J Michiels, and K Vlassak, and C Verreth, and F Waelkens, and J Vanderleyden
September 1993, Biochimica et biophysica acta,
I D'hooghe, and J Michiels, and K Vlassak, and C Verreth, and F Waelkens, and J Vanderleyden
April 1992, Journal of bacteriology,
I D'hooghe, and J Michiels, and K Vlassak, and C Verreth, and F Waelkens, and J Vanderleyden
November 1988, Applied and environmental microbiology,
I D'hooghe, and J Michiels, and K Vlassak, and C Verreth, and F Waelkens, and J Vanderleyden
March 1993, Journal of general microbiology,
I D'hooghe, and J Michiels, and K Vlassak, and C Verreth, and F Waelkens, and J Vanderleyden
September 1992, Gene,
I D'hooghe, and J Michiels, and K Vlassak, and C Verreth, and F Waelkens, and J Vanderleyden
February 1992, Carbohydrate research,
I D'hooghe, and J Michiels, and K Vlassak, and C Verreth, and F Waelkens, and J Vanderleyden
August 1996, Applied and environmental microbiology,
I D'hooghe, and J Michiels, and K Vlassak, and C Verreth, and F Waelkens, and J Vanderleyden
November 1989, Applied and environmental microbiology,
Copied contents to your clipboard!