Excitatory amino acid-induced currents in rat septal cholinergic neurons in culture. 1995

E Kumamoto, and Y Murata
Department of Physiology, Saga Medical School, Japan.

Whole-cell voltage-clamp recordings were used to study excitatory amino acid-induced currents in neurons isolated from the septum of fetal rat brains. The neurons were cultured for more than four weeks on a feeder layer composed of glial cells obtained from the septal region. Septal neurons were either fusiform, triangular or multipolar and 83% of cells showed acetylcholinesterase activity. L-Glutamate, kainate, quisqualate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) applied by local perfusion produced inward currents (Iglu, Ikai, Iquis and IAMPA, respectively) at -44mV which increased in amplitude with increasing concentration of agonist; they desensitized when induced at higher concentrations except for the Ikai. The EC50s for the peak Ikai and sustained Iglu, Iquis and IAMPA were 55, 13, 0.39 and 3.5 microM, respectively. 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX) depressed Ikai and IAMPA evoked at a concentration of 10 microM (IC50s: 0.58 and 0.84 microM, respectively). Schild analysis for the CNQX action on Ikai gave a dissociation constant of 0.27 microM for CNQX. n-Methyl-D-aspartate (NMDA) (with glycine, 3 microM) produced an inward current (INMDA) at -44 mV whose peak amplitude enhanced with increased concentrations (EC50 = 32 microM). INMDA was potentiated by glycine (EC50 = 0.15 microM) and inhibited by D-2-amino-5-phosphovalerate (IC50 = 9.9 microM for INMDA evoked at a concentration of 50 microM). MK-801 (0.1-10 microM) inhibited INMDA in a dose- and use-dependent manner. INMDA was (0.1-10 microM) inhibited INMDA in a dose- and use-dependent manner. INMDA was potentiated by spermine (EC50 = 247 microM; 91% increase at 1mM) in a manner independent of holding potential (VH). INMDA was inhibited by Mg2+ and Zn2+ (IC50 = 673 and 39 microM, respectively, at -44 mV) in a manner dependent on VH; the magnitudes of a depolarization required for an e-fold increase in their IC50s in a range of -64 to -24 mV were 16 and 22 mV, respectively. The action of Zn2+ was independent of VH > -24 mV. Current-voltage relations for Ikai, Iquis and IAMPA exhibited outward rectification, while that of INMDA showed a region of negative conductance at VH < -30 mV, which disappeared in a Mg(2+)-free solution. Reversal potentials for Ikai, Iquis, IAMPA and INMDA were close to 0 mV, indicating the involvement of non-specific cation channels. Increasing extracellular Ca2+ concentration from 2.4 to 30 mM did not affect the Ikai and Iquis, reversal potential showing negligible Ca2+ component, but shifted INMDA reversal potential to a more positive potential, yielding a ratio of Ca2+ permeability to that of monovalent cation to be 13. Cholinergic septal neurons in culture express non-NMDA-(AMPA/kainate-) and NMDA-type of glutamate receptor channels. Their properties were quantitatively similar to those of glutamate receptor channels on other types of neurons in the brain except for the actions of endogenous neuromodulators (Mg2+, Zn2+ and spermine) on NMDA receptor channels. It is suggested that NMDA receptor channels on different types of neurons may play a distinct role depending on a difference in the actions of these neuromodulators.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002799 Cholinergic Fibers Nerve fibers liberating acetylcholine at the synapse after an impulse. Cholinergic Fiber,Fiber, Cholinergic,Fibers, Cholinergic
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012686 Septal Nuclei Neural nuclei situated in the septal region. They have afferent and cholinergic efferent connections with a variety of FOREBRAIN and BRAIN STEM areas including the HIPPOCAMPAL FORMATION, the LATERAL HYPOTHALAMUS, the tegmentum, and the AMYGDALA. Included are the dorsal, lateral, medial, and triangular septal nuclei, septofimbrial nucleus, nucleus of diagonal band, nucleus of anterior commissure, and the nucleus of stria terminalis. Bed Nucleus of Stria Terminalis,Nucleus of Anterior Commissure,Nucleus of Diagonal Band,Nucleus of Stria Terminalis,Septofimbrial Nucleus,Dorsal Septal Nucleus,Lateral Septal Nucleus,Lateral Septum Nucleus,Medial Septal Nucleus,Medial Septum Nucleus,Nucleus Interstitialis Striae Terminalis,Nucleus Lateralis Septi,Nucleus Septalis Lateralis,Nucleus Septi Lateralis,Nucleus Striae Terminalis,Nucleus Triangularis Septi,Nucleus of the Stria Terminalis,Septal Nuclear Complex,Triangular Septal Nucleus,Anterior Commissure Nucleus,Complex, Septal Nuclear,Complices, Septal Nuclear,Diagonal Band Nucleus,Laterali, Nucleus Septalis,Laterali, Nucleus Septi,Lateralis Septi, Nucleus,Lateralis Septus, Nucleus,Lateralis, Nucleus Septalis,Lateralis, Nucleus Septi,Nuclear Complex, Septal,Nuclear Complices, Septal,Nuclei, Septal,Nucleus Lateralis Septus,Nucleus Septalis Laterali,Nucleus Septi Laterali,Nucleus Striae Terminali,Nucleus Triangularis Septus,Nucleus, Dorsal Septal,Nucleus, Lateral Septal,Nucleus, Lateral Septum,Nucleus, Medial Septal,Nucleus, Medial Septum,Nucleus, Septofimbrial,Nucleus, Triangular Septal,Septal Nuclear Complices,Septal Nucleus, Dorsal,Septal Nucleus, Lateral,Septal Nucleus, Medial,Septal Nucleus, Triangular,Septalis Laterali, Nucleus,Septalis Lateralis, Nucleus,Septi Laterali, Nucleus,Septi Lateralis, Nucleus,Septi, Nucleus Lateralis,Septi, Nucleus Triangularis,Septum Nucleus, Lateral,Septum Nucleus, Medial,Septus, Nucleus Lateralis,Septus, Nucleus Triangularis,Stria Terminalis Nucleus,Striae Terminali, Nucleus,Striae Terminalis, Nucleus,Terminali, Nucleus Striae,Terminalis, Nucleus Striae,Triangularis Septi, Nucleus,Triangularis Septus, Nucleus
D015032 Zinc A metallic element of atomic number 30 and atomic weight 65.38. It is a necessary trace element in the diet, forming an essential part of many enzymes, and playing an important role in protein synthesis and in cell division. Zinc deficiency is associated with ANEMIA, short stature, HYPOGONADISM, impaired WOUND HEALING, and geophagia. It is known by the symbol Zn.
D016202 N-Methylaspartate An amino acid that, as the D-isomer, is the defining agonist for the NMDA receptor subtype of glutamate receptors (RECEPTORS, NMDA). N-Methyl-D-aspartate,NMDA,N-Methyl-D-aspartic Acid,Acid, N-Methyl-D-aspartic,N Methyl D aspartate,N Methyl D aspartic Acid,N Methylaspartate

Related Publications

E Kumamoto, and Y Murata
August 1987, Journal of neurophysiology,
E Kumamoto, and Y Murata
January 1990, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
E Kumamoto, and Y Murata
January 1989, Neuroscience and biobehavioral reviews,
Copied contents to your clipboard!