Molecular characterization of the PEL1 gene encoding a putative phosphatidylserine synthase. 1995

M Janitor, and E Jarosch, and R J Schweyen, and J Subík
Comenius University, Department of Microbiology and Virology, Bratislava, Slovak Republic.

In the yeast Saccharomyces cerevisiae the PEL1 gene is essential for the viability of rho-/rhoo petite mutants, and its mutation in respiring cells results in a pleiotropic phenotype. Results of complementation analysis with different subclones of chromosomal DNA and re-sequencing of the YCL4w-YCL3w segment of chromsome III demonstrate that the coding region of the PEL1 gene corresponds to 1467 bp. The size of the PEL1 transcript in Northern blot analysis was estimated to be approximately 1.5 kb. Transcription initiation in wild-type cells was found to occur at the position -9 relative to the ATG. The PEL1 gene was moderately expressed irrespective of the state of the mitochondrial genome and the nature of the carbon sources. Disruption of the PEL1 gene was not lethal and resulted in the same phenotype as observed with the pel1 mutant, i.e. the cells were not able to survive ethidium bromide mutagenesis, were thermosensitive for growth on glucose at 37 degrees C and failed to grow on minimal glycerol medium. Although the Pel1 protein exhibits significant similarity to a family of phosphatidylserine synthases, the disrupted PEL1 gene was not complemented by the multicopy plasmid-borne CHO1 gene encoding an essential yeast phosphatidylserine synthase.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010717 CDPdiacylglycerol-Serine O-Phosphatidyltransferase An enzyme that catalyzes the formation of phosphatidylserine and CMP from CDPdiglyceride plus serine. EC 2.7.8.8. CDP Diacylglycerol-Serine O-Phosphatidyltransferase,CDP Diglyceride Serine O-Phosphatidyltransferase,CDP-DG Synthase,Phosphatidylserine Synthase,Phosphatidylserine Synthetase,CDP DG Synthase,CDP Diacylglycerol Serine O Phosphatidyltransferase,CDP Diglyceride Serine O Phosphatidyltransferase,CDPdiacylglycerol Serine O Phosphatidyltransferase,Diacylglycerol-Serine O-Phosphatidyltransferase, CDP,O-Phosphatidyltransferase, CDP Diacylglycerol-Serine,O-Phosphatidyltransferase, CDPdiacylglycerol-Serine,Synthase, CDP-DG,Synthase, Phosphatidylserine,Synthetase, Phosphatidylserine
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D016366 Open Reading Frames A sequence of successive nucleotide triplets that are read as CODONS specifying AMINO ACIDS and begin with an INITIATOR CODON and end with a stop codon (CODON, TERMINATOR). ORFs,Protein Coding Region,Small Open Reading Frame,Small Open Reading Frames,sORF,Unassigned Reading Frame,Unassigned Reading Frames,Unidentified Reading Frame,Coding Region, Protein,Frame, Unidentified Reading,ORF,Open Reading Frame,Protein Coding Regions,Reading Frame, Open,Reading Frame, Unassigned,Reading Frame, Unidentified,Region, Protein Coding,Unidentified Reading Frames

Related Publications

M Janitor, and E Jarosch, and R J Schweyen, and J Subík
August 1987, European journal of biochemistry,
M Janitor, and E Jarosch, and R J Schweyen, and J Subík
April 1997, The Journal of biological chemistry,
M Janitor, and E Jarosch, and R J Schweyen, and J Subík
December 1988, Journal of biochemistry,
M Janitor, and E Jarosch, and R J Schweyen, and J Subík
August 1997, Journal of bacteriology,
M Janitor, and E Jarosch, and R J Schweyen, and J Subík
September 2014, Genetics and molecular biology,
M Janitor, and E Jarosch, and R J Schweyen, and J Subík
February 2001, Molecules and cells,
M Janitor, and E Jarosch, and R J Schweyen, and J Subík
December 2002, Bioscience, biotechnology, and biochemistry,
M Janitor, and E Jarosch, and R J Schweyen, and J Subík
April 1998, The Journal of biological chemistry,
M Janitor, and E Jarosch, and R J Schweyen, and J Subík
September 1996, The Journal of biological chemistry,
Copied contents to your clipboard!