Adaptive regulation of amino acid transport in nutrient-deprived human hepatomas. 1996

M Wasa, and B P Bode, and W W Souba
Division of Surgical Oncology, Massachusetts General Hospital, Boston 02114, USA.

BACKGROUND Malignant cells require increased amounts of amino acids, in particular glutamine and leucine, to support DNA and protein biosynthesis. Although plasma concentrations in the center of solid tumors can be much lower than normal circulating levels, it is still unknown how tumor cells can survive despite low amino acid levels. We examined the effects of glutamine or leucine deprivation on cell growth and amino acid transport activity in two human hepatoma cell lines, SK-Hep and HepG2. METHODS We studied the transport of glutamine, leucine, alanine, and arginine. The carrier-mediated uptake of 3H-amino acids was determined in cells cultured in normal and amino acid-deprived media. RESULTS The growth of both cell lines was dependent on the concentration of glutamine and leucine. In SK-Hep, there was a significant increase in initial rate glutamine transport activity in the glutamine-deprived group, attributable to an increase in transporter affinity (Km; 0.6 mmol/L [control], 385 +/- 43 mumol/L; 0.1 mmol/L, 221 +/- 11 mumol/L; P < 0.01). At low glutamine concentration, the saturable Na(+)-independent uptake of leucine and arginine as well as the Na(+)-dependent uptake of alanine increased significantly in both SK-Hep and HepG2. Similarly, in leucine-deprived SK-Hep cells, leucine uptake increased twofold, but the change was attributable to an enhanced transporter capacity (Vmax; 0.2 mmol/L [control], 38,900 +/- 700; 0.0 mmol/L, 75,900 +/- 4,900 pmol/mg protein per minute; P < 0.001). CONCLUSIONS Adaptive increases in initial rate amino acid transport activities were elicited by glutamine and leucine deprivation in these two human hepatoma cell lines. Decreased extracellular amino acid levels encountered by tumors in vivo may elicit similar adaptive responses that contribute to the maintenance of cytoplasmic levels of amino acids essential for growth.

UI MeSH Term Description Entries
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D008113 Liver Neoplasms Tumors or cancer of the LIVER. Cancer of Liver,Hepatic Cancer,Liver Cancer,Cancer of the Liver,Cancer, Hepatocellular,Hepatic Neoplasms,Hepatocellular Cancer,Neoplasms, Hepatic,Neoplasms, Liver,Cancer, Hepatic,Cancer, Liver,Cancers, Hepatic,Cancers, Hepatocellular,Cancers, Liver,Hepatic Cancers,Hepatic Neoplasm,Hepatocellular Cancers,Liver Cancers,Liver Neoplasm,Neoplasm, Hepatic,Neoplasm, Liver
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D006528 Carcinoma, Hepatocellular A primary malignant neoplasm of epithelial liver cells. It ranges from a well-differentiated tumor with EPITHELIAL CELLS indistinguishable from normal HEPATOCYTES to a poorly differentiated neoplasm. The cells may be uniform or markedly pleomorphic, or form GIANT CELLS. Several classification schemes have been suggested. Hepatocellular Carcinoma,Hepatoma,Liver Cancer, Adult,Liver Cell Carcinoma,Liver Cell Carcinoma, Adult,Adult Liver Cancer,Adult Liver Cancers,Cancer, Adult Liver,Cancers, Adult Liver,Carcinoma, Liver Cell,Carcinomas, Hepatocellular,Carcinomas, Liver Cell,Cell Carcinoma, Liver,Cell Carcinomas, Liver,Hepatocellular Carcinomas,Hepatomas,Liver Cancers, Adult,Liver Cell Carcinomas
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000409 Alanine A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM. Abufène,Alanine, L-Isomer,L-Alanine,Alanine, L Isomer,L Alanine,L-Isomer Alanine
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

M Wasa, and B P Bode, and W W Souba
April 1981, The Journal of biological chemistry,
M Wasa, and B P Bode, and W W Souba
October 1983, The American journal of physiology,
M Wasa, and B P Bode, and W W Souba
February 1985, Journal of cellular physiology,
M Wasa, and B P Bode, and W W Souba
July 1991, The American journal of physiology,
M Wasa, and B P Bode, and W W Souba
December 1975, The Journal of laboratory and clinical medicine,
M Wasa, and B P Bode, and W W Souba
November 2019, Journal of molecular endocrinology,
M Wasa, and B P Bode, and W W Souba
December 1989, Acta endocrinologica,
M Wasa, and B P Bode, and W W Souba
October 1975, Biochimica et biophysica acta,
Copied contents to your clipboard!