Postnatal development of calbindin-D28k immunoreactivity in the cerebral cortex of the cat. 1995

S Alcantara, and I Ferrer
Unidad de Neuropatología, Hospital Príncipes de España, Universidad de Barcelona, Hospitalet de Llobregat, Spain.

To learn about maturational patterns of nonpyramidal neurons in the cerebral cortex, calbindin-D28k immunoreactivity was studied in the kitten cortex. Immunoreactive neurons first appear in the cortical and subcortical areas related to the limbic system, including the cingulate and retrosplenial cortices, and in the secondary motor areas. These are followed by the primary motor and sensory association areas and, finally, by the primary sensory areas. In all cortical areas, calbindin-D28k immunoreactivity first develops in layer V pyramidal neurons and later in nonpyramidal neurons, except in the primary sensory areas, where immunoreactive pyramidal neurons are not found at any age. Transient calbindin-D28k immunoreactivity occurs in pyramidal neurons that are mainly localized in the cingulate and retrosplenial cortices and in the secondary motor area, as well as in nonpyramidal neurons localized in the subplate and layer I, and in a subset of large multipolar and bitufted neurons in layer VI. Nonpyramidal neurons localized in layers II to IV, and some neurons in layer VI, develop permanent calbindin-D28k immunoreactivity. Calbindin-D28k immunoreactivity labels subsets of GABAergic interneurons that form vertical axonal tufts, so that temporal and regional patterns of calbindin-D28k immunoreactivity during development may be implicated in the maturation of columnar (vertical) inhibition in the cerebral cortex. In addition to neurons, corticofugal and afferent fibres of subcortical origin exhibit calbindin-D28k immunoreactivity. Transient calbindin-D28k immunoreactivity occurs in corticofugal fibres arising from the cingulate and prefrontal cortices, which are probably corticostriatal projection fibres. In contrast, permanent immunoreactivity occurs in what are probably thalamocortical fibres ending in layer IV, and in punctate terminals located in the upper third of layer I.

UI MeSH Term Description Entries
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D017966 Pyramidal Cells Projection neurons in the CEREBRAL CORTEX and the HIPPOCAMPUS. Pyramidal cells have a pyramid-shaped soma with the apex and an apical dendrite pointed toward the pial surface and other dendrites and an axon emerging from the base. The axons may have local collaterals but also project outside their cortical region. Pyramidal Neurons,Cell, Pyramidal,Cells, Pyramidal,Neuron, Pyramidal,Neurons, Pyramidal,Pyramidal Cell,Pyramidal Neuron
D018079 Receptors, GABA Cell-surface proteins that bind GAMMA-AMINOBUTYRIC ACID with high affinity and trigger changes that influence the behavior of cells. GABA-A receptors control chloride channels formed by the receptor complex itself. They are blocked by bicuculline and usually have modulatory sites sensitive to benzodiazepines and barbiturates. GABA-B receptors act through G-proteins on several effector systems, are insensitive to bicuculline, and have a high affinity for L-baclofen. GABA Receptors,Receptors, gamma-Aminobutyric Acid,gamma-Aminobutyric Acid Receptors,GABA Receptor,gamma-Aminobutyric Acid Receptor,Receptor, GABA,Receptor, gamma-Aminobutyric Acid,Receptors, gamma Aminobutyric Acid,gamma Aminobutyric Acid Receptor,gamma Aminobutyric Acid Receptors
D064026 Calbindins Calcium-binding proteins that are found in DISTAL KIDNEY TUBULES, INTESTINES, BRAIN, and other tissues where they bind, buffer and transport cytoplasmic calcium. Calbindins possess a variable number of EF-HAND MOTIFS which contain calcium-binding sites. Some isoforms are regulated by VITAMIN D. Calbindin

Related Publications

S Alcantara, and I Ferrer
July 2014, Anatomical record (Hoboken, N.J. : 2007),
S Alcantara, and I Ferrer
October 1994, The Journal of comparative neurology,
S Alcantara, and I Ferrer
April 2012, Autonomic neuroscience : basic & clinical,
S Alcantara, and I Ferrer
June 1997, The Journal of comparative neurology,
S Alcantara, and I Ferrer
January 2018, International journal of molecular sciences,
S Alcantara, and I Ferrer
January 1998, Neurobiology of aging,
Copied contents to your clipboard!