Reductive modification and nonreductive activation of purified spinach chloroplast NADP-dependent glyceraldehyde-3-phosphate dehydrogenase. 1995

E Baalmann, and J E Backhausen, and C Rak, and S Vetter, and R Scheibe
Fachbereich Biologie/Chemie, Universität Osnabrück, Federal Republic of Germany.

Spinach chloroplast NAD(P)-glyceraldehyde-3-phosphate dehydrogenase (NAD(P)-GAPDH; EC, 1.2.1.13) was purified as the 600-kDa oligomer of low specific activity. Incubation of the enzyme with either a reductant or a 1,3-bisphosphoglycerate (1,3bisPGA) generating system, but most effectively with both, resulted in an increase of the apparent NADPH-dependent activity. Only the 1,3bisPGA treatment caused dissociation and yielded the 150-kDa heterotetramer (A2B2). The higher activity of the tetramer is largely due to a decreased KM value for the substrate 1,3bisPGA. Reductive treatment alone does not dissociate the enzyme. Reduction was equally effective with glutathione as with dithiothreitol or with reduced thioredoxin f. The concentration of 1,3bisPGA required to obtain 50% activity (K alpha) was 19.5 +/- 4.1 microM for the untreated enzyme and 2.0 +/- 1.4 microM for the thiol-pretreated enzyme. Thus, in vitro 1,3bisPGA, alone or--at much lower concentrations--together with a reductant can activate (and dissociate) NAD(P)-GAPDH. The enzyme exhibits similar K alpha values in its reduced and its oxidized form for ATP (1-2 mM), NADP (50-200 microM), and NADPH (0.3-0.5 mM) as positive effectors, but these effectors do not lead to any activation when present together with 0.14 mM NAD. Only 1,3bisPGA retained its characteristic effect in the presence of NAD. The dissociated enzyme reaggregates upon removal of the positive effectors. From these results it is concluded (i) that the role of the reduction of the NAD(P)-GAPDH in vivo is to increase its sensitivity toward the activator 1,3bisPGA and (ii) that the actual activation (and aggregation) state of the enzyme in chloroplasts in the light is regulated by the concentration of 1,3bisPGA as activator in the stroma and its actual activity by the availability of 1,3bisPGA as substrate.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D004163 Diphosphoglyceric Acids Glyceric acids where two of the hydroxyl groups have been replaced by phosphates. Bisphosphoglycerates,Acids, Diphosphoglyceric
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005987 Glyceraldehyde-3-Phosphate Dehydrogenases Enzymes that catalyze the dehydrogenation of GLYCERALDEHYDE 3-PHOSPHATE. Several types of glyceraldehyde-3-phosphate-dehydrogenase exist including phosphorylating and non-phosphorylating varieties and ones that transfer hydrogen to NADP and ones that transfer hydrogen to NAD. GAPD,Glyceraldehyde-3-Phosphate Dehydrogenase,Glyceraldehydephosphate Dehydrogenase,Phosphoglyceraldehyde Dehydrogenase,Triosephosphate Dehydrogenase,Dehydrogenase, Glyceraldehyde-3-Phosphate,Dehydrogenase, Glyceraldehydephosphate,Dehydrogenase, Phosphoglyceraldehyde,Dehydrogenase, Triosephosphate,Dehydrogenases, Glyceraldehyde-3-Phosphate,Glyceraldehyde 3 Phosphate Dehydrogenase
D013438 Sulfhydryl Compounds Compounds containing the -SH radical. Mercaptan,Mercapto Compounds,Sulfhydryl Compound,Thiol,Thiols,Mercaptans,Compound, Sulfhydryl,Compounds, Mercapto,Compounds, Sulfhydryl
D018724 Spinacia oleracea A widely cultivated plant, native to Asia, having succulent, edible leaves eaten as a vegetable. (From American Heritage Dictionary, 1982) Spinach

Related Publications

E Baalmann, and J E Backhausen, and C Rak, and S Vetter, and R Scheibe
April 1986, Archives of biochemistry and biophysics,
E Baalmann, and J E Backhausen, and C Rak, and S Vetter, and R Scheibe
May 1990, Archives of biochemistry and biophysics,
E Baalmann, and J E Backhausen, and C Rak, and S Vetter, and R Scheibe
January 1973, Archives of biochemistry and biophysics,
E Baalmann, and J E Backhausen, and C Rak, and S Vetter, and R Scheibe
April 1978, Plant physiology,
E Baalmann, and J E Backhausen, and C Rak, and S Vetter, and R Scheibe
February 1988, Archives of biochemistry and biophysics,
E Baalmann, and J E Backhausen, and C Rak, and S Vetter, and R Scheibe
June 1993, Biological chemistry Hoppe-Seyler,
E Baalmann, and J E Backhausen, and C Rak, and S Vetter, and R Scheibe
October 1976, The Journal of biological chemistry,
E Baalmann, and J E Backhausen, and C Rak, and S Vetter, and R Scheibe
November 2001, Journal of molecular biology,
E Baalmann, and J E Backhausen, and C Rak, and S Vetter, and R Scheibe
April 2006, Acta crystallographica. Section F, Structural biology and crystallization communications,
E Baalmann, and J E Backhausen, and C Rak, and S Vetter, and R Scheibe
August 1981, Biochimica et biophysica acta,
Copied contents to your clipboard!