A second molybdoprotein aldehyde dehydrogenase from Amycolatopsis methanolica NCIB 11946. 1996

S W Kim, and D M Luykx, and S de Vries, and J A Duine
Department of Microbiology & Enzymology, Delft University of Technology, The Netherlands.

Methanol-grown Amycolatopsis methanolica NCIB 11946 contains a molybdoprotein dehydrogenase, active with aldehydes and formate esters as substrates and with Wurster's blue as electron acceptor, the so-called formate ester dehydrogenase (FEDH) (van Ophem et al., 1992, Eur. J. Biochem. 206, 519-525). It appears now that another molybdoprotein dehydrogenase is present in this organism. This enzyme, indicated here as dye-linked aldehyde dehydrogenase (DL-AlDH), has the same set of cofactors and converts the same type of substrates but with different specificity, and uses 2,6-dichlorophenol-indophenol as sole artificial electron acceptor for those conversions. The enzymes also differ in their quaternary structure, FEDH having an alpha, beta, gamma and DL-AlDH having an alpha, beta, gamma 2 composition. Furthermore, differences exist with respect to the sizes and the N-terminal amino acid sequences of their subunits, indicating that the enzymes derive from different genes. However, neither their substrate specificity nor their induction pattern give a clear indication for distinct physiological roles. Just like other bacterial molybdoprotein dehydrogenases, DL-AlDH consists of three different subunits (87, 35, and 17 kDa) and contains FAD, molybdopterin-cytosine-dinucleotide cofactor, Fe, and acid-labile sulfide in a molar ratio of 1:1:4:4. Although eukaryotic xanthine oxidase and dehydrogenase differ from these prokaryotic dehydrogenases in size and number of their subunits, certain stretches of amino acid sequences show similarity and the magnetic coupling between the Mo and the [2Fe-2S]-1 cluster in DL-AlDH and bovine milk xanthine oxidase is of the same magnitude. In view of this similarity, the topology of the cofactors in the active site of this type of molybdoproteins might be conserved among enzymes from prokaryotic as well as eukaryotic organisms.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011622 Pterins Compounds based on 2-amino-4-hydroxypteridine. Pterin
D003597 Cytosine Nucleotides A group of pyrimidine NUCLEOTIDES which contain CYTOSINE. Cytidine Phosphates,Nucleotides, Cytosine,Phosphates, Cytidine
D005182 Flavin-Adenine Dinucleotide A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) FAD,Flavitan,Dinucleotide, Flavin-Adenine,Flavin Adenine Dinucleotide
D000444 Aldehyde Dehydrogenase An enzyme that oxidizes an aldehyde in the presence of NAD+ and water to an acid and NADH. This enzyme was formerly classified as EC 1.1.1.70. D-Glucuronolactone Dehydrogenase,Aldehyde Dehydrogenase (NAD(+)),Aldehyde Dehydrogenase E1,Aldehyde Dehydrogenase E2,Aldehyde-NAD Oxidoreductase,Aldehyde NAD Oxidoreductase,D Glucuronolactone Dehydrogenase,Dehydrogenase, Aldehyde,Dehydrogenase, D-Glucuronolactone
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D013440 Sulfides Chemical groups containing the covalent sulfur bonds -S-. The sulfur atom can be bound to inorganic or organic moieties. Sulfide,Thioether,Thioethers,Sulfur Ethers,Ethers, Sulfur

Related Publications

S W Kim, and D M Luykx, and S de Vries, and J A Duine
April 1990, International journal of systematic bacteriology,
S W Kim, and D M Luykx, and S de Vries, and J A Duine
July 1997, European journal of biochemistry,
S W Kim, and D M Luykx, and S de Vries, and J A Duine
November 1992, Journal of general microbiology,
S W Kim, and D M Luykx, and S de Vries, and J A Duine
November 1994, Journal of bacteriology,
S W Kim, and D M Luykx, and S de Vries, and J A Duine
June 1989, European journal of biochemistry,
S W Kim, and D M Luykx, and S de Vries, and J A Duine
November 1994, Journal of bacteriology,
Copied contents to your clipboard!