Effect of human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein on HIV-1 reverse transcriptase activity in vitro. 1996

X Ji, and G J Klarmann, and B D Preston
Department of Biochemistry, University of Utah, Salt Lake City 84112, USA.

Conversion of human immunodeficiency virus type 1 (HIV-1) genomic RNA to viral DNA is a requisite step in the virus life cycle. This conversion is catalyzed by reverse transcriptase (RT) associated with a large nucleoprotein complex composed of several viral proteins including nucleocapsid (NC). To better characterize the biochemical mechanisms of viral DNA synthesis, we overexpressed and purified recombinant HIV-1 NC and studied its effect on the activity and processivity of HIV-1 RT during polymerization of HIV-1 template sequences in vitro. The effect of NC on steady-state RT activity was dependent on the order of addition of reaction components. Addition of NC prior to formation of RT-primer.template-dNTP ternary complexes inhibited primer extension and reduced total product yields by slowing steady-state RT turnover. In contrast, addition of NC to preformed ternary complexes resulted in efficient primer extension and increased RT processivity at specific DNA template sites. NC stimulated polymerization (2-4 times) through eight of 13 sites examined in the cRRE region of HIV-1 env and increased the rate of polymerization through the D3/CTS region of HIV-1 pol 10 times. The data suggest that NC affects RT processivity by facilitating polymerization through regions of template secondary structure. Thus, NC functions as a single-strand binding (SSB)-like accessory replication factor for RT in vitro and may be part of a multicomponent retroviral replication complex.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002213 Capsid The outer protein protective shell of a virus, which protects the viral nucleic acid. Capsids are composed of repeating units (capsomers or capsomeres) of CAPSID PROTEINS which when assembled together form either an icosahedral or helical shape. Procapsid,Prohead,Capsids,Procapsids,Proheads
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012194 RNA-Directed DNA Polymerase An enzyme that synthesizes DNA on an RNA template. It is encoded by the pol gene of retroviruses and by certain retrovirus-like elements. EC 2.7.7.49. DNA Polymerase, RNA-Directed,RNA-Dependent DNA Polymerase,Reverse Transcriptase,RNA Transcriptase,Revertase,DNA Polymerase, RNA Directed,DNA Polymerase, RNA-Dependent,RNA Dependent DNA Polymerase,RNA Directed DNA Polymerase
D013698 Templates, Genetic Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES. Genetic Template,Genetic Templates,Template, Genetic

Related Publications

X Ji, and G J Klarmann, and B D Preston
March 2022, Natural product research,
X Ji, and G J Klarmann, and B D Preston
February 1996, Biological chemistry Hoppe-Seyler,
X Ji, and G J Klarmann, and B D Preston
September 2004, Chembiochem : a European journal of chemical biology,
X Ji, and G J Klarmann, and B D Preston
January 2004, Current topics in medicinal chemistry,
X Ji, and G J Klarmann, and B D Preston
January 1996, Journal of acquired immune deficiency syndromes and human retrovirology : official publication of the International Retrovirology Association,
Copied contents to your clipboard!