Oxidative titration of the nitrogenase VFe protein from Azotobacter vinelandii: an example of redox-gated electron flow. 1996

R C Tittsworth, and B J Hales
Department of Chemistry, Louisiana State University, Baton Rouge 70803-1804, USA.

The nitrogenase VFe protein of Azotobacter vinelandii (Av1') has been shown to exist in two forms called Av1'A, which has a primary alpha beta 2 trimeric structure, and Av1'B, which has an alpha 2 beta 2 tetrameric structure [Blanchard, C. Z., & Hales, B. J. (1996) Biochemistry 35, 472-478]. Both forms exhibit S = 5/2 EPR signals in the as-isolated state that may be assigned to 1-equiv-oxidized P clusters (P+). These signals are abolished by enzymatic reduction with the component 2 protein (Av2'). Stepwise oxidative titrations of enzymatically reduced Av1'B result in the restoration of the S = 5/2 P+ signals and the concurrent decrease of the S = 3/2 vanadium cofactor signal. Further oxidation results in the appearance of an integer spin signal assigned to the 2-equiv-oxidized P cluster (P2+). Unlike the analogous signal previously observed in Mo nitrogenase component 1 (Av1), which arises from an excited state, the integer spin P2+ signal in Av1'B originates from a ground-state doublet. Similar oxidative titrations of enzymatically reduced Av1'A show redox behavior dramatically different from that of Av1'B, as monitored by EPR spectroscopy. We observed spectral evidence for a redox-induced intramolecular electron transfer between the reduced P cluster and the oxidized FeV cofactor cluster during the titrations.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D008982 Molybdenum A metallic element with the atomic symbol Mo, atomic number 42, and atomic weight 95.95. It is an essential trace element, being a component of the enzymes xanthine oxidase, aldehyde oxidase, and nitrate reductase. Molybdenum-98,Molybdenum 98
D009591 Nitrogenase An enzyme system that catalyzes the fixing of nitrogen in soil bacteria and blue-green algae (CYANOBACTERIA). EC 1.18.6.1. Dinitrogenase,Vanadium Nitrogenase,Nitrogenase, Vanadium
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D013455 Sulfur An element that is a member of the chalcogen family. It has an atomic symbol S, atomic number 16, and atomic weight [32.059; 32.076]. It is found in the amino acids cysteine and methionine. Sulfur-16,Sulfur 16
D014639 Vanadium A metallic element with the atomic symbol V, atomic number 23, and atomic weight 50.94. It is used in the manufacture of vanadium steel. Prolonged exposure can lead to chronic intoxication caused by absorption usually via the lungs. Vanadium-51,Vanadium 51
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular

Related Publications

R C Tittsworth, and B J Hales
June 2009, Proceedings of the National Academy of Sciences of the United States of America,
R C Tittsworth, and B J Hales
January 1996, Biochemistry,
R C Tittsworth, and B J Hales
August 1994, The Journal of biological chemistry,
R C Tittsworth, and B J Hales
June 1985, European journal of biochemistry,
R C Tittsworth, and B J Hales
December 1998, Biochemistry,
R C Tittsworth, and B J Hales
November 1983, The Journal of biological chemistry,
R C Tittsworth, and B J Hales
September 1992, Science (New York, N.Y.),
R C Tittsworth, and B J Hales
October 1983, The Journal of biological chemistry,
Copied contents to your clipboard!