Glutathione conjugation of the cytostatic drug ifosfamide and the role of human glutathione S-transferases. 1995

H A Dirven, and L Megens, and M J Oudshoorn, and M A Dingemanse, and B van Ommen, and P J van Bladeren
Division of Toxicology, TNO Nutrition and Food Research Institute, Zeist, The Netherlands.

Development of drug resistance against alkylating cytostatic drugs has been associated with higher intracellular concentrations of glutathione (GSH) and increased expression of glutathione S-transferase (GST) enzymes. Therefore, enhanced detoxification by the glutathione/glutathione S-transferase pathway has been proposed as a major factor in the development of drug resistance toward alkylating agents. In this paper we describe 31P NMR and HPLC studies on the spontaneous and glutathione S-transferase catalyzed formation of glutathionyl conjugates of two metabolites of ifosfamide, i.e., 4-hydroxyifosfamide and ifosfamide mustard. At 25 degrees C activated ifosfamide (= 4-hydroxyifosfamide + aldoifosfamide) disappeared faster in the presence of a 10-fold excess of GSH (t1/2 = 107 min) compared to incubations without GSH (t1/2 = 266 min). No evidence for the formation of 4-glutathionyl ifosfamide was found. The ultimate alkylating species of ifosfamide is ifosfamide mustard (IM). In the absence of glutathione, the rate constant for the disappearance of the ifosfamide mustard signal at 25 degrees C (pH 7) was 1.98 x 10(-3) min-1 (t1/2 = 350 min). In the presence of a 10-fold molar excess of glutathione, this rate constant was 1.95 x 10(-3) min-1 (t1/2 = 355 min), indicating that the spontaneous formation of an aziridinium ion is the rate-limiting event in the reaction with glutathione. The aziridinium ion formed from IM can deprotonate upon formation, leading to the formation of a (noncharged) aziridine species. This intermediate (N-(2-chloroethyl)-N'-phosphoric acid diamide) was characterized by 31P, 1H, and 13C NMR spectra. When 2 mM ifosfamide mustard was incubated with 1 mM GSH in the presence of 40 microM GST P1-1, the formation of monoglutathionyl ifosfamide mustard was 2.3-fold increased above the spontaneous level. The other major human isoenzymes tested (A1-1, A2-2, and M1a-1a) did not influence the formation of monoglutathionyl ifosfamide mustard. The results of these studies demonstrate that increased levels of GST P1-1 can contribute to an enhanced detoxification of ifosfamide.

UI MeSH Term Description Entries
D007069 Ifosfamide Positional isomer of CYCLOPHOSPHAMIDE which is active as an alkylating agent and an immunosuppressive agent. Isofosfamide,Isophosphamide,Asta Z 4942,Holoxan,Iphosphamide,Iso-Endoxan,NSC-109,724,NSC-109724,Iso Endoxan,NSC 109,724,NSC 109724,NSC109,724,NSC109724
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008658 Inactivation, Metabolic Reduction of pharmacologic activity or toxicity of a drug or other foreign substance by a living system, usually by enzymatic action. It includes those metabolic transformations that make the substance more soluble for faster renal excretion. Detoxication, Drug, Metabolic,Drug Detoxication, Metabolic,Metabolic Detoxication, Drug,Detoxification, Drug, Metabolic,Metabolic Detoxification, Drug,Metabolic Drug Inactivation,Detoxication, Drug Metabolic,Detoxication, Metabolic Drug,Detoxification, Drug Metabolic,Drug Inactivation, Metabolic,Drug Metabolic Detoxication,Drug Metabolic Detoxification,Inactivation, Metabolic Drug,Metabolic Drug Detoxication,Metabolic Inactivation
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001711 Biotransformation The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.
D016339 Spectrometry, Mass, Fast Atom Bombardment A mass spectrometric technique that is used for the analysis of a wide range of biomolecules, such as glycoalkaloids, glycoproteins, polysaccharides, and peptides. Positive and negative fast atom bombardment spectra are recorded on a mass spectrometer fitted with an atom gun with xenon as the customary beam. The mass spectra obtained contain molecular weight recognition as well as sequence information. Fast Atom Bombardment Mass Spectrometry,Fast Atom Bombardment Mass Spectroscopy,Mass Spectrometry, Fast Atom Bombardment,Mass Spectroscopy, Fast Atom Bombardment,Spectroscopy, Mass, Fast Atom Bombardment

Related Publications

H A Dirven, and L Megens, and M J Oudshoorn, and M A Dingemanse, and B van Ommen, and P J van Bladeren
March 1996, Chemical research in toxicology,
H A Dirven, and L Megens, and M J Oudshoorn, and M A Dingemanse, and B van Ommen, and P J van Bladeren
August 1996, Cancer research,
H A Dirven, and L Megens, and M J Oudshoorn, and M A Dingemanse, and B van Ommen, and P J van Bladeren
September 1989, Biochemical pharmacology,
H A Dirven, and L Megens, and M J Oudshoorn, and M A Dingemanse, and B van Ommen, and P J van Bladeren
January 1991, Drug metabolism reviews,
H A Dirven, and L Megens, and M J Oudshoorn, and M A Dingemanse, and B van Ommen, and P J van Bladeren
March 1994, The International journal of biochemistry,
H A Dirven, and L Megens, and M J Oudshoorn, and M A Dingemanse, and B van Ommen, and P J van Bladeren
January 1998, Seminars in liver disease,
H A Dirven, and L Megens, and M J Oudshoorn, and M A Dingemanse, and B van Ommen, and P J van Bladeren
January 1990, Cancer cells (Cold Spring Harbor, N.Y. : 1989),
H A Dirven, and L Megens, and M J Oudshoorn, and M A Dingemanse, and B van Ommen, and P J van Bladeren
October 1978, Biochimica et biophysica acta,
H A Dirven, and L Megens, and M J Oudshoorn, and M A Dingemanse, and B van Ommen, and P J van Bladeren
January 1992, Chemical research in toxicology,
H A Dirven, and L Megens, and M J Oudshoorn, and M A Dingemanse, and B van Ommen, and P J van Bladeren
September 1991, Biochemical pharmacology,
Copied contents to your clipboard!