Species-dependent differences in biotransformation pathways of 2-methylpropene (isobutene). 1995

M Cornet, and A Callaerts, and U Jorritsma, and H Bolt, and A Vercruysse, and V Rogiers
Department of Toxicology, Vrije Universiteit Brussel, Belgium.

The biotransformation of 2-methylpropene, a gaseous alkene widely used in industry, was investigated in vitro in liver tissue of rats, mice, and humans. Interspecies comparison revealed that the lowest levels of the primary epoxide metabolite were detected in incubations of 2-methylpropene with human liver homogenate, followed by rat and mouse, respectively. Among the human liver samples, however, important interindividual variations were observed. Out of the 16 samples analyzed, only 2 contained measurable epoxide amounts, while in the other samples only traces were detectable. The involvement of rat liver cytochrome P450 2E1 in the activation of 2-methylpropene to its epoxide 2-methyl-1,2-epoxypropane has been established. The lower capacity of the mixed function oxidase system in human liver samples compared to rodents is confirmed. Concerning epoxide detoxifying enzymes, a high microsomal epoxide hydrolase activity was observed in human liver tissue and an intermediate in rat liver, while a low activity was measured in mouse liver. These findings were inversely correlated with the epoxide levels measured in vitro in liver tissue of the three species studied. It can be concluded that, as far as the in vitro metabolism of 2-methylpropene is concerned, neither mouse nor rat represents a good model for the human situation. Although, the same biotransformation pathways are involved, marked quantitative differences in epoxide levels were observed. The results indicate that human liver tissue is exposed in vitro to smaller concentrations of the primary metabolite 2-methyl-1,2-epoxypropane than rodent liver.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008658 Inactivation, Metabolic Reduction of pharmacologic activity or toxicity of a drug or other foreign substance by a living system, usually by enzymatic action. It includes those metabolic transformations that make the substance more soluble for faster renal excretion. Detoxication, Drug, Metabolic,Drug Detoxication, Metabolic,Metabolic Detoxication, Drug,Detoxification, Drug, Metabolic,Metabolic Detoxification, Drug,Metabolic Drug Inactivation,Detoxication, Drug Metabolic,Detoxication, Metabolic Drug,Detoxification, Drug Metabolic,Drug Inactivation, Metabolic,Drug Metabolic Detoxication,Drug Metabolic Detoxification,Inactivation, Metabolic Drug,Metabolic Drug Detoxication,Metabolic Inactivation
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004852 Epoxy Compounds Organic compounds that include a cyclic ether with three ring atoms in their structure. They are commonly used as precursors for POLYMERS such as EPOXY RESINS. Epoxide,Epoxides,Epoxy Compound,Oxiranes,Compound, Epoxy,Compounds, Epoxy
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

M Cornet, and A Callaerts, and U Jorritsma, and H Bolt, and A Vercruysse, and V Rogiers
January 1991, Archives of toxicology,
M Cornet, and A Callaerts, and U Jorritsma, and H Bolt, and A Vercruysse, and V Rogiers
May 1997, Critical reviews in toxicology,
M Cornet, and A Callaerts, and U Jorritsma, and H Bolt, and A Vercruysse, and V Rogiers
January 1994, Archives of toxicology,
M Cornet, and A Callaerts, and U Jorritsma, and H Bolt, and A Vercruysse, and V Rogiers
June 1992, Mutation research,
M Cornet, and A Callaerts, and U Jorritsma, and H Bolt, and A Vercruysse, and V Rogiers
February 1995, Toxicology,
M Cornet, and A Callaerts, and U Jorritsma, and H Bolt, and A Vercruysse, and V Rogiers
January 1994, Archives of toxicology,
M Cornet, and A Callaerts, and U Jorritsma, and H Bolt, and A Vercruysse, and V Rogiers
January 1994, Archives of toxicology,
M Cornet, and A Callaerts, and U Jorritsma, and H Bolt, and A Vercruysse, and V Rogiers
April 1964, Naunyn-Schmiedebergs Archiv fur experimentelle Pathologie und Pharmakologie,
M Cornet, and A Callaerts, and U Jorritsma, and H Bolt, and A Vercruysse, and V Rogiers
January 2004, Report on carcinogens : carcinogen profiles,
Copied contents to your clipboard!