Effects of bicuculline and baclofen on paired-pulse depression in the dentate gyrus of epileptic patients. 1995

K Uruno, and M J O'Connor, and L M Masukawa
Department of Neurology, Graduate Hospital Research Center, Philadelphia, PA 19146, USA.

Paired-pulse field responses were recorded from the granule cell layer of the dentate gyrus in brain slices from temporal lobe epileptic patients. Paired-pulse depression (PPD) was examined using perforant path stimulation of low to moderate intensity at an inter-stimulus interval (ISI) of 20 ms. The paired-pulse ratio (PS2/PS1) was expressed as the population spike amplitude of the second response (PS2) relative to that of the first response (PS1). Representative tissue response from each patient biopsy were divided into two groups that were significantly different based on the magnitude of the highest paired-pulse ratio recorded for each biopsy specimen: the strong paired-pulse depression group (PS2/PS1 = 0.12 +/- 0.03; n = 15) and the weak paired-pulse depression group (PS2/PS1 = 0.68 +/- 0.06; n = 13). Paired-pulse ratios from the strong PPD group were relatively independent of stimulus intensity, whereas, PPD was dependent on stimulus intensity in the weak PPD group; i.e., PPD was greatest at the lowest intensity and reached a plateau at higher intensities. Bicuculline (20 microM) and low concentrations of baclofen (0.1-0.2 microM) reduced paired-pulse depression in the strong PPD group, but did not significantly change the paired-pulse ratio in the weak PPD group. Paired-pulse facilitation was observed in some cases after inhibition was blocked pharmacologically. The number of population spikes was increased in the presence of bicuculline but was unchanged by baclofen. In the strong PPD group, baclofen significantly altered the EPSP-population spike (E-S) relationship by increasing the slope of the relationship for the second response, without having an effect on the slope of the first response. Baclofen had no effect on the E-S relationship of either response in the weak PPD group. The data are consistent with (1) less inhibition in the weak PPD group compared to the strong PPD group, (2) reduction of feedback inhibition in the strong PPD group by bicuculline and by low concentrations of baclofen, and (3) the occurrence of paired-pulse facilitation when inhibition was pharmacologically reduced in the dentate gyrus of temporal lobe epileptic patients. The results are also consistent with the presence of GABAB receptors on human inhibitory interneurons that, when activated by baclofen, result in disinhibition of granule cells through feedback circuits. Although inhibition may be compromised in some epileptic human biopsy specimens, the presence of strong inhibition in other patients' biopsy material suggest the re-evaluation of the role of inhibition in epilepsy.

UI MeSH Term Description Entries
D008297 Male Males
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004833 Epilepsy, Temporal Lobe A localization-related (focal) form of epilepsy characterized by recurrent seizures that arise from foci within the TEMPORAL LOBE, most commonly from its mesial aspect. A wide variety of psychic phenomena may be associated, including illusions, hallucinations, dyscognitive states, and affective experiences. The majority of complex partial seizures (see EPILEPSY, COMPLEX PARTIAL) originate from the temporal lobes. Temporal lobe seizures may be classified by etiology as cryptogenic, familial, or symptomatic. (From Adams et al., Principles of Neurology, 6th ed, p321). Epilepsy, Benign Psychomotor, Childhood,Benign Psychomotor Epilepsy, Childhood,Childhood Benign Psychomotor Epilepsy,Epilepsy, Lateral Temporal,Epilepsy, Uncinate,Epilepsies, Lateral Temporal,Epilepsies, Temporal Lobe,Epilepsies, Uncinate,Lateral Temporal Epilepsies,Lateral Temporal Epilepsy,Temporal Lobe Epilepsies,Temporal Lobe Epilepsy,Uncinate Epilepsies,Uncinate Epilepsy
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D001418 Baclofen A GAMMA-AMINOBUTYRIC ACID derivative that is a specific agonist of GABA-B RECEPTORS. It is used in the treatment of MUSCLE SPASTICITY, especially that due to SPINAL CORD INJURIES. Its therapeutic effects result from actions at spinal and supraspinal sites, generally the reduction of excitatory transmission. Baclophen,Chlorophenyl GABA,Apo-Baclofen,Atrofen,Ba-34,647,Ba-34647,Baclofen AWD,Baclofène-Irex,Baclospas,CIBA-34,647-BA,Clofen,Gen-Baclofen,Genpharm,Lebic,Lioresal,Liorésal,Nu-Baclo,PCP-GABA,PMS-Baclofen,beta-(Aminomethyl)-4-chlorobenzenepropanoic Acid,beta-(p-Chlorophenyl)-gamma-aminobutyric Acid,AWD, Baclofen,Apo Baclofen,ApoBaclofen,Ba34,647,Ba34647,Baclofène Irex,BaclofèneIrex,CIBA34,647BA,GABA, Chlorophenyl,Gen Baclofen,GenBaclofen,Nu Baclo,NuBaclo,PMS Baclofen,PMSBaclofen
D001640 Bicuculline An isoquinoline alkaloid obtained from Dicentra cucullaria and other plants. It is a competitive antagonist for GABA-A receptors. 6-(5,6,7,8-Tetrahydro-6-methyl-1,3-dioxolo(4,5-g)isoquinolin-5-yl)furo(3,4-e)1,3-benzodioxol-8(6H)one

Related Publications

K Uruno, and M J O'Connor, and L M Masukawa
June 1987, Brain research,
K Uruno, and M J O'Connor, and L M Masukawa
December 1999, Brain research,
K Uruno, and M J O'Connor, and L M Masukawa
August 1995, Neuroscience letters,
K Uruno, and M J O'Connor, and L M Masukawa
January 1989, Experimental brain research,
K Uruno, and M J O'Connor, and L M Masukawa
January 2000, Annals of biomedical engineering,
K Uruno, and M J O'Connor, and L M Masukawa
January 1994, Neuroreport,
Copied contents to your clipboard!