[Epileptogenesis. Epilepsy and aging]. 1995

J Olaskoaga, and J Urcola
Servicio de Neurologia, Hospital de Gipuzkoa, Guipúzcoa.

UI MeSH Term Description Entries
D004827 Epilepsy A disorder characterized by recurrent episodes of paroxysmal brain dysfunction due to a sudden, disorderly, and excessive neuronal discharge. Epilepsy classification systems are generally based upon: (1) clinical features of the seizure episodes (e.g., motor seizure), (2) etiology (e.g., post-traumatic), (3) anatomic site of seizure origin (e.g., frontal lobe seizure), (4) tendency to spread to other structures in the brain, and (5) temporal patterns (e.g., nocturnal epilepsy). (From Adams et al., Principles of Neurology, 6th ed, p313) Aura,Awakening Epilepsy,Seizure Disorder,Epilepsy, Cryptogenic,Auras,Cryptogenic Epilepsies,Cryptogenic Epilepsy,Epilepsies,Epilepsies, Cryptogenic,Epilepsy, Awakening,Seizure Disorders
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D018079 Receptors, GABA Cell-surface proteins that bind GAMMA-AMINOBUTYRIC ACID with high affinity and trigger changes that influence the behavior of cells. GABA-A receptors control chloride channels formed by the receptor complex itself. They are blocked by bicuculline and usually have modulatory sites sensitive to benzodiazepines and barbiturates. GABA-B receptors act through G-proteins on several effector systems, are insensitive to bicuculline, and have a high affinity for L-baclofen. GABA Receptors,Receptors, gamma-Aminobutyric Acid,gamma-Aminobutyric Acid Receptors,GABA Receptor,gamma-Aminobutyric Acid Receptor,Receptor, GABA,Receptor, gamma-Aminobutyric Acid,Receptors, gamma Aminobutyric Acid,gamma Aminobutyric Acid Receptor,gamma Aminobutyric Acid Receptors
D018091 Receptors, AMPA A class of ionotropic glutamate receptors characterized by their affinity for the agonist AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid). AMPA Receptors,Quisqualate Receptors,AMPA Receptor,Quisqualate Receptor,Receptor, AMPA,Receptor, Quisqualate,Receptors, Quisqualate
D018698 Glutamic Acid A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM. Aluminum L-Glutamate,Glutamate,Potassium Glutamate,D-Glutamate,Glutamic Acid, (D)-Isomer,L-Glutamate,L-Glutamic Acid,Aluminum L Glutamate,D Glutamate,Glutamate, Potassium,L Glutamate,L Glutamic Acid,L-Glutamate, Aluminum

Related Publications

J Olaskoaga, and J Urcola
February 2009, Epilepsia,
J Olaskoaga, and J Urcola
January 2021, Neurobiology of disease,
J Olaskoaga, and J Urcola
November 2002, Neurology,
J Olaskoaga, and J Urcola
March 2019, Epilepsy & behavior : E&B,
J Olaskoaga, and J Urcola
January 2019, International journal of molecular sciences,
J Olaskoaga, and J Urcola
November 2012, Nature medicine,
J Olaskoaga, and J Urcola
January 1978, Experimental neurology,
J Olaskoaga, and J Urcola
May 2024, Nature reviews. Neurology,
J Olaskoaga, and J Urcola
January 2017, Current pharmaceutical design,
J Olaskoaga, and J Urcola
January 2019, Neurobiology of disease,
Copied contents to your clipboard!