Phosphoinositide-mediated phototransduction in Drosophila photoreceptors: the role of Ca2+ and trp. 1995

R C Hardie, and B Minke
Department of Anatomy, University of Cambridge, UK.

Drosphoinate photoreceptors, represent a paradigm for the genetic dissection of phototransduction and, more generally for Ca2+ signaling. As in most invertebrates, phototransduction in Drosophila is mediated by the phosphoinositide (PI) cascade and is completely blocked by null mutations of the norpA gene which encodes a phospholipase C-beta isoform. The light-activated conductance in Drosophila is normally highly permeable to Ca2+, but in null mutants of the trp gene Ca2+ permeability is greatly reduced. Furthermore, the trp gene sequence shows homologies with voltage gated Ca2+ channels, suggesting that trp encodes a light-sensitive channel subunit. Ca2+ influx via these channels is instrumental in light adaptation, and profoundly influences phototransduction via positive and negative feedback at multiple molecular targets including protein kinase C. The mechanism of activation of the light-sensitive channels remains unresolved. A requirement for Ca2+ release from internal stores is suggested by the finding that Drosophila photoreceptors cannot sustain a maintained response under various conditions which might be expected to result in depletion of Ca2+ stores. However, Ca2+ release cannot be detected by Ca2+ indicator dyes and raising Ca2+ by photorelease of caged Ca2+ fails to mimic excitation. Recent studies, both in situ and with heterologously expressed trp protein, suggest that the trp-dependent channels may be activated by a process analogous to 'capacitative Ca2+ entry', a widespread, but poorly understood mode of PI-regulated Ca2+ influx in vertebrate cells.

UI MeSH Term Description Entries
D007301 Insect Hormones Hormones secreted by insects. They influence their growth and development. Also synthetic substances that act like insect hormones. Insect Hormone,Hormone, Insect,Hormones, Insect
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D050051 Transient Receptor Potential Channels A broad group of eukaryotic six-transmembrane cation channels that are classified by sequence homology because their functional involvement with SENSATION is varied. They have only weak voltage sensitivity and ion selectivity. They are named after a DROSOPHILA mutant that displayed transient receptor potentials in response to light. A 25-amino-acid motif containing a TRP box (EWKFAR) just C-terminal to S6 is found in TRPC, TRPV and TRPM subgroups. ANKYRIN REPEATS are found in TRPC, TRPV & TRPN subgroups. Some are functionally associated with TYROSINE KINASE or TYPE C PHOSPHOLIPASES. TRP Cation Channel,Transient Receptor Potential Cation Channel,Transient Receptor Potential Channel,TRP Cation Channels,TRP Membrane Proteins,Transient Receptor Potential Cation Channels,Cation Channel, TRP,Cation Channels, TRP,Channel, TRP Cation,Channels, TRP Cation,Membrane Proteins, TRP,Proteins, TRP Membrane
D017956 Photoreceptor Cells, Invertebrate Specialized cells in the invertebrates that detect and transduce light. They are predominantly rhabdomeric with an array of photosensitive microvilli. Illumination depolarizes invertebrate photoreceptors by stimulating Na+ influx across the plasma membrane. Invertebrate Photoreceptors,Photoreceptors, Invertebrate,Invertebrate Photoreceptor Cells,Cell, Invertebrate Photoreceptor,Cells, Invertebrate Photoreceptor,Invertebrate Photoreceptor,Invertebrate Photoreceptor Cell,Photoreceptor Cell, Invertebrate,Photoreceptor, Invertebrate

Related Publications

R C Hardie, and B Minke
April 1996, Molecular neurobiology,
R C Hardie, and B Minke
February 1999, Cell calcium,
R C Hardie, and B Minke
January 2002, Advances in experimental medicine and biology,
R C Hardie, and B Minke
January 2003, Cell calcium,
R C Hardie, and B Minke
November 1985, Science (New York, N.Y.),
R C Hardie, and B Minke
April 2018, Journal of cell science,
Copied contents to your clipboard!