Comparison of immune responses of mice immunized with five different Mycobacterium bovis BCG vaccine strains. 1996

M R Lagranderie, and A M Balazuc, and E Deriaud, and C D Leclerc, and M Gheorghiu
Laboratoire du BCG, Institut Pasteur, Paris, France.

Among the various parameters which may contribute to Mycobacterium bovis BCG vaccination efficiency, the choice of the vaccine strain may play an important role. In the present study, we therefore compared the immunogenicity of five different BCG strains that are commonly used for BCG vaccine production (Glaxo 1077, Japanese 172, Pasteur 1173P2, Prague, and Russian strains). The comparison of the growth capacity of these BCG strains in BALB/c and C3H mice demonstrated that a great difference exists between the capacity of various BCG strains to multiply and persist in target organs. A much lower recovery of BCG could be shown in mice immunized with Prague and Japanese BCG strains. T-cell responses of BCG-immunized mice were also examined by analyzing T-cell proliferative responses, cytokine production, delayed-type hypersensitivity responses, and cytotoxic activity. All these assays demonstrated that BCG immunization induced strong CD4+ T-cell responses, mostly of the Th1 type, as demonstrated by interleukin-2 and gamma interferon production. These studies also demonstrated that there are differences between BCG strains in stimulating these T-cell responses. A lack of induction of cytotoxic activity was observed following immunization with the Japanese strain. Lower anti-purified protein derivative antibody responses were also observed after intravenous or oral immunization with this BCG strain. Finally, the protective activity of these BCG strains was tested by measuring the capacity of immunized mice to eliminate recombinant Pasteur and Japanese BCG strains which expressed beta-galactosidase. The results of these experiments clearly demonstrated that the Prague and Japanese strains were unable to protect mice against a second mycobacterial challenge whereas mice immunized with the Glaxo, Pasteur, or Russian strain eliminated the recombinant BCG very efficiently. Altogether, the results of the present study strongly support the view that there are considerable differences in the immunogenicity of various BCG vaccine strains and that these differences may play a major role in BCG vaccination efficiency.

UI MeSH Term Description Entries
D007111 Immunity, Cellular Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune
D007132 Immunoglobulin Isotypes The classes of immunoglobulins found in any species of animal. In man there are nine classes that migrate in five different groups in electrophoresis; they each consist of two light and two heavy protein chains, and each group has distinguishing structural and functional properties. Antibody Class,Ig Isotype,Ig Isotypes,Immunoglobulin Class,Immunoglobulin Isotype,Antibody Classes,Immunoglobulin Classes,Class, Antibody,Class, Immunoglobulin,Classes, Antibody,Classes, Immunoglobulin,Isotype, Ig,Isotype, Immunoglobulin,Isotypes, Ig,Isotypes, Immunoglobulin
D008198 Lymph Nodes They are oval or bean shaped bodies (1 - 30 mm in diameter) located along the lymphatic system. Lymph Node,Node, Lymph,Nodes, Lymph
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D009163 Mycobacterium bovis The bovine variety of the tubercle bacillus. It is called also Mycobacterium tuberculosis var. bovis. BCG,Calmette-Guerin Bacillus
D010581 Peyer's Patches Lymphoid tissue on the mucosa of the small intestine. Patches, Peyer's,Peyer Patches,Peyers Patches
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M R Lagranderie, and A M Balazuc, and E Deriaud, and C D Leclerc, and M Gheorghiu
June 2007, Infection and immunity,
M R Lagranderie, and A M Balazuc, and E Deriaud, and C D Leclerc, and M Gheorghiu
June 2011, Journal of bacteriology,
M R Lagranderie, and A M Balazuc, and E Deriaud, and C D Leclerc, and M Gheorghiu
January 2009, Antimicrobial agents and chemotherapy,
M R Lagranderie, and A M Balazuc, and E Deriaud, and C D Leclerc, and M Gheorghiu
November 2019, Infection and immunity,
M R Lagranderie, and A M Balazuc, and E Deriaud, and C D Leclerc, and M Gheorghiu
November 2008, Infection and immunity,
M R Lagranderie, and A M Balazuc, and E Deriaud, and C D Leclerc, and M Gheorghiu
November 1973, Infection and immunity,
M R Lagranderie, and A M Balazuc, and E Deriaud, and C D Leclerc, and M Gheorghiu
March 1983, Journal of general microbiology,
M R Lagranderie, and A M Balazuc, and E Deriaud, and C D Leclerc, and M Gheorghiu
January 1977, Developments in biological standardization,
M R Lagranderie, and A M Balazuc, and E Deriaud, and C D Leclerc, and M Gheorghiu
July 2001, Vaccine,
M R Lagranderie, and A M Balazuc, and E Deriaud, and C D Leclerc, and M Gheorghiu
August 2012, Fish & shellfish immunology,
Copied contents to your clipboard!