Sp1-mediated transcriptional activation of the human Pi class glutathione S-transferase promoter. 1996

G J Moffat, and A W McLaren, and C R Wolf
Imperial Cancer Research Fund Molecular Pharmacology Unit, Ninewells Hospital and Medical School, Dundee, Scotland.

Previous studies in this laboratory have identified an essential AP-1 recognition sequence (C1 region; -69 to -63) in th human Pi class glutathione s-transferase (GSTP1) promoter and a negatively acting regulatory element (-105 to -86) that acts to suppress GSTP1 transcription in the human mammary carcinoma cell line, MCF7 (1). The data presented here further delineate the functional characteristics of the GSTP1 promoter by examining the significance of two potential binding sites for the transcription factor, Sp1 (-57 to -49 and -47 to -39). The introduction of mutations within these Sp1-like elements and the use of Sp1 antisera in electrophoretic mobility shift assays demonstrated that Sp1 was bound to this region of the GSTP1 promoter in three different cell lines, MCF7, VCREMS, and EJ. Moreover, these in vitro studies indicated that only one of the two putative Sp1 response elements was utilized. Transient transfection assays using GSTP1 promoter constructs that incorporated mutations of the Sp1 elements clearly demonstrated that binding of Sp1 to the GSTP1 promoter was absolutely required for optimal levels of GSTP1 transcription. In particular, disruption of the distal Sp1 recognition motif (-57 to -49) markedly reduced GSTP1 promoter activity in each cell line, thus indicating preferential binding of Sp1 to the distal site. However, insertion of the repressor binding site (-105 to -86) into these constructs suggested that Sp1 was not involved in mediating the suppressive effects of the GSTP1 transcriptional repressor in MCF7 cells, because inhibition of Sp1 binding did not alleviate repressor activity. Therefore, these studies provide strong evidence that Sp1 plays a central role in regulating basal levels of GSTP1 transcription.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015533 Transcriptional Activation Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes. Gene Activation,Genetic Induction,Transactivation,Induction, Genetic,Trans-Activation, Genetic,Transcription Activation,Activation, Gene,Activation, Transcription,Activation, Transcriptional,Genetic Trans-Activation,Trans Activation, Genetic
D016329 Sp1 Transcription Factor Promoter-specific RNA polymerase II transcription factor that binds to the GC box, one of the upstream promoter elements, in mammalian cells. The binding of Sp1 is necessary for the initiation of transcription in the promoters of a variety of cellular and viral GENES. Transcription Factor, Sp1,Specificity Protein 1 Transcription Factor

Related Publications

G J Moffat, and A W McLaren, and C R Wolf
October 1991, Biochemical and biophysical research communications,
G J Moffat, and A W McLaren, and C R Wolf
August 1994, Biochemistry and molecular biology international,
G J Moffat, and A W McLaren, and C R Wolf
February 1995, Biochemical genetics,
G J Moffat, and A W McLaren, and C R Wolf
February 2005, The Journal of molecular diagnostics : JMD,
G J Moffat, and A W McLaren, and C R Wolf
August 1997, Proteins,
G J Moffat, and A W McLaren, and C R Wolf
July 1997, Research communications in molecular pathology and pharmacology,
G J Moffat, and A W McLaren, and C R Wolf
November 2000, Biochemical and biophysical research communications,
G J Moffat, and A W McLaren, and C R Wolf
November 1987, Cancer research,
Copied contents to your clipboard!