The beta-adrenergic receptor is a substrate for the insulin receptor tyrosine kinase. 1996

K Baltensperger, and V Karoor, and H Paul, and A Ruoho, and M P Czech, and C C Malbon
Program in Molecular Medicine and the Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester, 01605, USA.

G-protein-linked receptors and intrinsic tyrosine-kinase growth receptors represent two prominent modalities in cell signaling. Cross-regulation among members of both receptor superfamilies has been reported, including the counter-regulatory effects of insulin on beta-adrenergic catecholamine action. Cells stimulated by insulin show loss of function and increased phosphotyrosine content of beta 2-adrenergic receptors. Phosphorylation of tyrosyl residues 350/354 of beta 2-adrenergic receptors is obligatory for counter-regulation by insulin (Karoor, V., Baltensperger, K., Paul, H., Czech, M., and Malbon, C. C. (1995) J. Biol. Chem. 270, 25305-25308), suggesting the hypothesis that G-protein-linked receptors themselves may act as substrates for the insulin receptor and other growth factor receptors. This hypothesis was evaluated directly using recombinant human insulin receptor, hamster beta 2-adrenergic receptor, and an vitro reconstitution and phosphorylation assay. Insulin is shown to stimulate insulin receptor-catalyzed phosphorylation of the beta 2-adrenergic receptor. Phosphoamino acid analysis establishes that insulin receptor-catalyzed phosphorylation of the beta 2-adrenergic receptor in vitro is confined to phosphotyrosine. High pressure liquid chromatography and two-dimensional mapping reveal insulin receptor-catalyzed phosphorylation of the beta 2-adrenergic receptor at residues Tyr132/Tyr141, Tyr350/Tyr354, and Tyr364, known sites of phosphorylation in response to insulin in vivo. Insulin-like growth factor-I receptor as well as the insulin receptor displays the capacity to phosphorylate the beta 2-adrenergic receptor in vitro, establishing a new paradigm, i.e. G-protein-linked receptors acting as substrates for intrinsic tyrosine kinase growth factor receptors.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D016466 CHO Cells CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells. CHO Cell,Cell, CHO,Cells, CHO

Related Publications

K Baltensperger, and V Karoor, and H Paul, and A Ruoho, and M P Czech, and C C Malbon
January 1990, The Journal of biological chemistry,
K Baltensperger, and V Karoor, and H Paul, and A Ruoho, and M P Czech, and C C Malbon
May 2015, Biochimica et biophysica acta,
K Baltensperger, and V Karoor, and H Paul, and A Ruoho, and M P Czech, and C C Malbon
April 1985, The Journal of biological chemistry,
K Baltensperger, and V Karoor, and H Paul, and A Ruoho, and M P Czech, and C C Malbon
August 1993, Biochemical Society transactions,
K Baltensperger, and V Karoor, and H Paul, and A Ruoho, and M P Czech, and C C Malbon
June 1998, Biochemical and biophysical research communications,
K Baltensperger, and V Karoor, and H Paul, and A Ruoho, and M P Czech, and C C Malbon
March 2002, The Journal of biological chemistry,
K Baltensperger, and V Karoor, and H Paul, and A Ruoho, and M P Czech, and C C Malbon
December 1983, European journal of biochemistry,
K Baltensperger, and V Karoor, and H Paul, and A Ruoho, and M P Czech, and C C Malbon
January 1990, Biochemical and biophysical research communications,
K Baltensperger, and V Karoor, and H Paul, and A Ruoho, and M P Czech, and C C Malbon
January 2009, British journal of haematology,
K Baltensperger, and V Karoor, and H Paul, and A Ruoho, and M P Czech, and C C Malbon
March 1998, The Journal of biological chemistry,
Copied contents to your clipboard!