Kinetic studies of calcium binding to the regulatory site of troponin C from cardiac muscle. 1996

W Dong, and S S Rosenfeld, and C K Wang, and A M Gordon, and H C Cheung
Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham 35294, USA.

We have studied the kinetics of the structural transitions induced by calcium binding to the single, regulatory site of cardiac troponin C by measuring the rates of calcium-mediated fluorescence changes with a monocysteine mutant of the protein (C35S) specifically labeled at Cys-84 with the fluorescent probe 2(-)[4'-(iodoacetamido)anilino]naphthalene-6-sulfonic acid. At 4 degrees C, the binding kinetics determined in the presence of Mg2+ was resolved into two phases with positive amplitude, which were completed in less than 100 ms. The rate of the fast phase increased linearly with [Ca2+] reaching a maximum of approximately 590 s-1, and that of the slow phase was approximately 100 s-1 and did not depend on Ca2+ concentration. Dissociation of bound Ca2+ from the regulatory site occurred with a rate of 102 s-1, whereas the dissociation from the two high affinity sites was about two orders of magnitude slower. These results are consistent with the following scheme for the binding of Ca2+ to the regulatory site: [formula: see text] where the asterisks denote states with enhanced fluorescence. The apparent second-order rate constant for calcium binding is Kok1 = 1.4 x 10(8) M 1 s-1. The two first-order transitions occur with observed rates of k1 + kappa-1 approximately 590 s-1 and kappa 2 + kappa-2 approximately 100 s-1, and the binding of Ca2+ to the regulatory site is not a simple diffusion-controlled reaction. These transitions provide the first information on the rates of Ca(2+)-induced conformational changes involving helix movements in the regulatory domain.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014336 Troponin One of the minor protein components of skeletal and cardiac muscles. It functions as the calcium-binding component in a complex with BETA-TROPOMYOSIN; ACTIN; and MYOSIN and confers calcium sensitivity to the cross-linked actin and myosin filaments. Troponin itself is a complex of three regulatory proteins (TROPONIN C; TROPONIN I; and TROPONIN T). Troponin Complex,Troponins
D017510 Protein Folding Processes involved in the formation of TERTIARY PROTEIN STRUCTURE. Protein Folding, Globular,Folding, Globular Protein,Folding, Protein,Foldings, Globular Protein,Foldings, Protein,Globular Protein Folding,Globular Protein Foldings,Protein Foldings,Protein Foldings, Globular
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D019209 Troponin C A TROPONIN complex subunit that binds calcium and help regulate calcium-dependent muscle contraction. There are two troponin C subtypes: troponin C1 and C2. Troponin C1 is skeletal and cardiac type whereas troponin C2 is skeletal type. Troponin C1 is a BIOMARKER for damaged or injured CARDIAC MYOCYTES and mutations in troponin C1 gene are associated with FAMILIAL HYPERTROPHIC CARDIOMYOPATHY. Troponin C1,Troponin C2,Troponin-C

Related Publications

W Dong, and S S Rosenfeld, and C K Wang, and A M Gordon, and H C Cheung
July 2002, European biophysics journal : EBJ,
W Dong, and S S Rosenfeld, and C K Wang, and A M Gordon, and H C Cheung
January 1985, The Journal of biological chemistry,
W Dong, and S S Rosenfeld, and C K Wang, and A M Gordon, and H C Cheung
January 1985, The Journal of biological chemistry,
W Dong, and S S Rosenfeld, and C K Wang, and A M Gordon, and H C Cheung
March 1978, Archives of biochemistry and biophysics,
W Dong, and S S Rosenfeld, and C K Wang, and A M Gordon, and H C Cheung
November 1998, Protein science : a publication of the Protein Society,
W Dong, and S S Rosenfeld, and C K Wang, and A M Gordon, and H C Cheung
October 1990, Journal of molecular and cellular cardiology,
W Dong, and S S Rosenfeld, and C K Wang, and A M Gordon, and H C Cheung
October 1994, Biochemistry,
W Dong, and S S Rosenfeld, and C K Wang, and A M Gordon, and H C Cheung
July 1989, The Journal of biological chemistry,
W Dong, and S S Rosenfeld, and C K Wang, and A M Gordon, and H C Cheung
January 2013, Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry,
W Dong, and S S Rosenfeld, and C K Wang, and A M Gordon, and H C Cheung
November 1985, Biophysical journal,
Copied contents to your clipboard!