The CDS1 gene encoding CDP-diacylglycerol synthase in Saccharomyces cerevisiae is essential for cell growth. 1996

H Shen, and P N Heacock, and C J Clancey, and W Dowhan
Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston 77225, USA.

An open reading frame (CDS1) residing on chromosome II of Saccharomyces cerevisiae encodes a hydrophobic protein with a predicted molecular mass of 51,789 Da, which exhibits 29 and 37% amino acid sequence identities with CDP-diacylglycerol synthases reported from Escherichia coli and Drosophila, respectively. Induction of expression of a GAL1 promoter-driven CDS1 gene on a multicopy plasmid in a cds1 null mutant background resulted in synthase activity 10 times that of wild-type cells and an elevation in the apparent initial rate of synthesis of phosphatidylinositol relative to phosphatidylserine. Without induction, activity was reduced to 10% of wild-type levels, which was sufficient to support growth but resulted in an inositol excretion phenotype, and had an opposite effect on the above phospholipid synthesis. Null cds1 mutants were incapable of spore germination or vegetative growth and could not be complemented under uninduced conditions with a GAL1 promoter-driven CDS1 gene on a low copy plasmid. Therefore, the essential CDS1 gene encodes the majority, if not all, of the synthase activity. The lack of consensus RNA splice sites derived from the genomic CDS1 sequence predicts that the multiple subcellular locations for synthase activities do not arise through RNA processing events.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002798 Diacylglycerol Cholinephosphotransferase An enzyme that catalyzes the synthesis of phosphatidylcholines from CDPcholine and 1,2-diacylglycerols. EC 2.7.8.2. Cholinephosphotransferase,Phosphorylcholine-Glyceride Transferase,1-alkyl-2-Acetylglycerol Cholinephosphotransferase,CDP-Choline 1,2-Diglyceride Choline Phosphotransferase,CDP-Choline Cholinephosphotransferase,CDP-Diacylglycerol Synthase,Diacylglycerol-CDP Choline Phosphotransferase,PAF Phosphocholinetransferase,Phosphocholinetransferase,Phosphorylcholineglyceride Transferase,CDP Choline 1,2 Diglyceride Choline Phosphotransferase,CDP Choline Cholinephosphotransferase,CDP Diacylglycerol Synthase,Choline Phosphotransferase, Diacylglycerol-CDP,Cholinephosphotransferase, 1-alkyl-2-Acetylglycerol,Cholinephosphotransferase, CDP-Choline,Cholinephosphotransferase, Diacylglycerol,Diacylglycerol CDP Choline Phosphotransferase,Phosphocholinetransferase, PAF,Phosphorylcholine Glyceride Transferase,Phosphotransferase, Diacylglycerol-CDP Choline,Synthase, CDP-Diacylglycerol,Transferase, Phosphorylcholine-Glyceride,Transferase, Phosphorylcholineglyceride
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D016366 Open Reading Frames A sequence of successive nucleotide triplets that are read as CODONS specifying AMINO ACIDS and begin with an INITIATOR CODON and end with a stop codon (CODON, TERMINATOR). ORFs,Protein Coding Region,Small Open Reading Frame,Small Open Reading Frames,sORF,Unassigned Reading Frame,Unassigned Reading Frames,Unidentified Reading Frame,Coding Region, Protein,Frame, Unidentified Reading,ORF,Open Reading Frame,Protein Coding Regions,Reading Frame, Open,Reading Frame, Unassigned,Reading Frame, Unidentified,Region, Protein Coding,Unidentified Reading Frames
D016415 Sequence Alignment The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms. Sequence Homology Determination,Determination, Sequence Homology,Alignment, Sequence,Alignments, Sequence,Determinations, Sequence Homology,Sequence Alignments,Sequence Homology Determinations

Related Publications

H Shen, and P N Heacock, and C J Clancey, and W Dowhan
September 1985, Journal of bacteriology,
H Shen, and P N Heacock, and C J Clancey, and W Dowhan
October 1987, The Journal of biological chemistry,
H Shen, and P N Heacock, and C J Clancey, and W Dowhan
January 2006, Cancer genomics & proteomics,
H Shen, and P N Heacock, and C J Clancey, and W Dowhan
April 1996, FEBS letters,
H Shen, and P N Heacock, and C J Clancey, and W Dowhan
November 1996, The Journal of biological chemistry,
H Shen, and P N Heacock, and C J Clancey, and W Dowhan
November 1989, Gene,
H Shen, and P N Heacock, and C J Clancey, and W Dowhan
January 1998, The Journal of biological chemistry,
H Shen, and P N Heacock, and C J Clancey, and W Dowhan
January 2000, Antonie van Leeuwenhoek,
H Shen, and P N Heacock, and C J Clancey, and W Dowhan
January 1986, Current genetics,
H Shen, and P N Heacock, and C J Clancey, and W Dowhan
September 1997, Biochimica et biophysica acta,
Copied contents to your clipboard!