Reconstitution of the rat olfactory epithelium after methyl bromide-induced lesion. 1995

J E Schwob, and S L Youngentob, and R C Mezza
Department of Anatomy and Cell Biology, State University of New York Health Science Center, Syracuse 13210, USA.

The olfactory epithelium and its neuronal population are known to have a substantial capacity to recover after either direct injury or damage to the olfactory nerve. However, the mechanisms underlying that capacity for recovery, and indeed the limits on the recovery process, are not well understood. The aim of this study is to describe in detail the way in which the olfactory epithelium reconstitutes after direct injury. Adult male rats were exposed to 330 ppm methyl bromide (MeBr) gas for a single 6-hour period. The exposure destroys all of the neurons and sustentacular cells in over 95% of the olfactory epithelium of food-restricted rats and in over 90% of the epithelium in ad-libitum-fed rats of the same weight, yet substantial recovery of the olfactory epithelium occurs. In response to the lesion, cellular proliferation increases markedly beginning between 24 and 48 hours, peaks at 1 week, and persists at levels higher than the control level for more than 4 weeks after MeBr exposure. Even though proliferation accelerates promptly, the beginning of neuronal reconstitution is delayed; only a few immature neurons are observed 3 days after the lesion, yet they reappear in large numbers by the end of the first week. The first mature neurons emerge between 7 and 14 days after lesion and increase to near normal numbers by 4-6 weeks. In association with the restoration of the neuronal population, basal cell proliferation returns to control levels between 4 and 6 weeks after damage. Likewise, sustentacular cells, identifiable by anticytokeratin 18 labeling, reappear rapidly and reform a distinct lamina in the superficial aspect of the epithelium. They closely resemble their counterparts in control epithelium with regard to disposition and shape by 3 weeks after lesion and with regard to expression of olfactory-specific cytochrome P450s by 8 weeks. Thus, most areas of the epithelium are restored to a near normal appearance and cellular composition by the end of 8 weeks, suggesting that the MeBr paradigm for lesioning the epithelium offers significant advantages over techniques such as Triton X-100 or ZnSO4 irrigation. However, not all measures of epithelial status are normal even at 8 weeks. Immature neurons remain slightly more numerous than normal at this time. Furthermore, some areas of the olfactory epithelium do not recover after MeBr lesion and are replaced by respiratory epithelium.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009832 Olfactory Nerve The 1st cranial nerve. The olfactory nerve conveys the sense of smell. It is formed by the axons of OLFACTORY RECEPTOR NEURONS which project from the olfactory epithelium (in the nasal epithelium) to the OLFACTORY BULB. Cranial Nerve I,First Cranial Nerve,Nervus Olfactorius,Fila Olfactoria,Olfactory Fila,Cranial Nerve Is,Cranial Nerve, First,Cranial Nerves, First,First Cranial Nerves,Nerve I, Cranial,Nerve Is, Cranial,Nerve, First Cranial,Nerve, Olfactory,Nerves, Olfactory,Olfactory Nerves
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001973 Bromodeoxyuridine A nucleoside that substitutes for thymidine in DNA and thus acts as an antimetabolite. It causes breaks in chromosomes and has been proposed as an antiviral and antineoplastic agent. It has been given orphan drug status for use in the treatment of primary brain tumors. BUdR,BrdU,Bromouracil Deoxyriboside,Broxuridine,5-Bromo-2'-deoxyuridine,5-Bromodeoxyuridine,NSC-38297,5 Bromo 2' deoxyuridine,5 Bromodeoxyuridine,Deoxyriboside, Bromouracil
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004427 Ear Diseases Pathological processes of the ear, the hearing, and the equilibrium system of the body. Otologic Diseases,Otological Diseases,Disease, Ear,Disease, Otologic,Disease, Otological,Ear Disease,Otologic Disease,Otological Disease
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell

Related Publications

J E Schwob, and S L Youngentob, and R C Mezza
September 2014, Chemical senses,
J E Schwob, and S L Youngentob, and R C Mezza
March 2011, Toxicological sciences : an official journal of the Society of Toxicology,
J E Schwob, and S L Youngentob, and R C Mezza
May 2005, The European journal of neuroscience,
J E Schwob, and S L Youngentob, and R C Mezza
December 1995, Experimental neurology,
J E Schwob, and S L Youngentob, and R C Mezza
October 1986, Toxicology and applied pharmacology,
J E Schwob, and S L Youngentob, and R C Mezza
November 2010, Experimental neurology,
J E Schwob, and S L Youngentob, and R C Mezza
June 1982, Bulletin de l'Association des anatomistes,
J E Schwob, and S L Youngentob, and R C Mezza
February 1975, Tsitologiia,
J E Schwob, and S L Youngentob, and R C Mezza
February 1977, Physiology & behavior,
Copied contents to your clipboard!