Human orbitofrontal cortex: cytoarchitecture and quantitative immunohistochemical parcellation. 1995

P R Hof, and E J Mufson, and J H Morrison
Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, New York 10029, USA.

The primate orbitofrontal cortex is a component of the paralimbic cortical "belt" and consists of several distinct areas. It is involved in high order association functions that include the integration of emotion, behavior, and various sensory processes. To define the cyto- and chemo-architectonic organization of the human orbitofrontal cortex, we have used antibodies to the nonphosphorylated neurofilament triplet protein and to the calcium-binding proteins parvalbumin and calretinin. Immunohistochemistry revealed labeling patterns corresponding to the cytoarchitecture defined by Nissl preparations. Neurofilament protein-immunoreactive pyramidal neurons were located only in layers V-VI in the agranular posterior orbitofrontal cortex, whereas they were distributed in both layers III and V-VI in the anteromedial and anterolateral granular regions. The intermediate dysgranular portion of the orbitofrontal cortex represented a transition zone with a progressive decrease in layer III labeled pyramidal cell numbers posteriorly. The distribution of parvalbumin- and calretinin-immunoreactive interneurons was more homogeneous, although the posteromedial region and the cortex of the inferior rostral sulcus had slightly lower parvalbumin-positive neuron counts than the other orbitofrontal areas. Parvalbumin immunoreactivity in the neuropil exhibited a high degree of regional specialization in that it was consistently less intense in the cortex of the intermediate and posterior part of the gyrus rectus, whereas the other orbitofrontal areas had a very dense neuropil staining in layers III to V. Also, there was a dense plexus of parvalbumin-immunoreactive fibers restricted to layer I in the posterolateral orbitofrontal cortex, and patches of neuropil staining in layer III of the inferior rostral sulcus. These region-specific neuropil staining patterns may correspond to the distribution of parvalbumin-immunoreactive thalamocortical projections to distinct domains of the orbitofrontal cortex. This regional parcellation of the human orbitofrontal cortex as defined by specific neuronal markers, may represent an anatomical substrate for the localization of the various functions attributed to this poorly understood cortical region.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D010320 Parvalbumins Low molecular weight, calcium binding muscle proteins. Their physiological function is possibly related to the contractile process. Parvalbumin,Parvalbumin B
D005625 Frontal Lobe The part of the cerebral hemisphere anterior to the central sulcus, and anterior and superior to the lateral sulcus. Brodmann Area 8,Brodmann's Area 8,Frontal Cortex,Frontal Eye Fields,Lobus Frontalis,Supplementary Eye Field,Area 8, Brodmann,Area 8, Brodmann's,Brodmanns Area 8,Cortex, Frontal,Eye Field, Frontal,Eye Field, Supplementary,Eye Fields, Frontal,Frontal Cortices,Frontal Eye Field,Frontal Lobes,Lobe, Frontal,Supplementary Eye Fields
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly
D000369 Aged, 80 and over Persons 80 years of age and older. Oldest Old
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
D001344 Autopsy Postmortem examination of the body. Autopsies,Post-Mortem Examination,Postmortem Examination,Examination, Post-Mortem,Examination, Postmortem,Examinations, Post-Mortem,Examinations, Postmortem,Post Mortem Examination,Post-Mortem Examinations,Postmortem Examinations
D016900 Neurofilament Proteins Type III intermediate filament proteins that assemble into neurofilaments, the major cytoskeletal element in nerve axons and dendrites. They consist of three distinct polypeptides, the neurofilament triplet. Types I, II, and IV intermediate filament proteins form other cytoskeletal elements such as keratins and lamins. It appears that the metabolism of neurofilaments is disturbed in Alzheimer's disease, as indicated by the presence of neurofilament epitopes in the neurofibrillary tangles, as well as by the severe reduction of the expression of the gene for the light neurofilament subunit of the neurofilament triplet in brains of Alzheimer's patients. (Can J Neurol Sci 1990 Aug;17(3):302) Neurofilament Protein,Heavy Neurofilament Protein,Neurofilament Triplet Proteins,Neurofilament Protein, Heavy,Protein, Heavy Neurofilament,Protein, Neurofilament,Proteins, Neurofilament,Proteins, Neurofilament Triplet,Triplet Proteins, Neurofilament

Related Publications

P R Hof, and E J Mufson, and J H Morrison
May 2012, The Journal of neuroscience : the official journal of the Society for Neuroscience,
P R Hof, and E J Mufson, and J H Morrison
February 2016, Cortex; a journal devoted to the study of the nervous system and behavior,
P R Hof, and E J Mufson, and J H Morrison
February 2015, Human brain mapping,
P R Hof, and E J Mufson, and J H Morrison
July 2010, Psychiatry research,
P R Hof, and E J Mufson, and J H Morrison
September 1992, The Journal of comparative neurology,
P R Hof, and E J Mufson, and J H Morrison
January 2023, Brain structure & function,
P R Hof, and E J Mufson, and J H Morrison
September 2018, Current biology : CB,
P R Hof, and E J Mufson, and J H Morrison
March 2014, Cerebral cortex (New York, N.Y. : 1991),
P R Hof, and E J Mufson, and J H Morrison
November 1997, Psychiatry research,
Copied contents to your clipboard!