Characterization of endothelial cell injury by cholesterol oxidation products found in oxidized LDL. 1995

A Sevanian, and H N Hodis, and J Hwang, and L L McLeod, and H Peterson
Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles 90033, USA.

The present study describes the toxicity of oxidized LDL towards rabbit aortic endothelial cells in terms of its lipid components with specific attention to the cholesterol oxidation products (ChOx) found in oxidized LDL isolated from human plasma. Measurements of the major ChOx associated with freshly isolated unmodified LDL, those found in oxidized LDL isolated from human plasma and LDL subjected to oxidation in vitro are described. We have confirmed previous findings that most of the cytotoxicity of freshly isolated human LDL may be attributable to a minor fraction that appears to be oxidatively modified by several criteria. Moreover, this plasma-derived oxidized LDL (referred to as LDL) is highly enriched in ChOx, whereas the content of lipid peroxides or derived products (measured as conjugated dienes and thiobarbituric acid reacting products) are much lower, particularly when compared to copper-induced LDL oxidation. Much of the ChOx found in plasma are associated with LDL, however, the levels and proportions of the various ChOx found in LDL differ from those produced after extensive copper-induced oxidation but resemble those produced after moderate oxidation with copper. The species and concentrations of ChOx found in LDL when applied as a mixture exhibit considerably more toxicity than any individual ChOx alone. At non-toxic levels this ChOx mixture causes an increased influx of several ions, including calcium, an effect not seen with individual ChOx at comparable doses. Perturbations in ionic homeostasis, and particularly the sustained increase in intracellular calcium concentrations, are associated with much of the cytotoxicity, an effect attributable to the membrane disruptive action of ChOx leading to altered ion transporter activity. The effect of the ChOx mixture (but not any individual ChOx) on sodium and potassium flux appears to be due to enhanced Na+/K(+)-ATPase activity based on the complete inhibition produced by ouabain under all treatment conditions. These findings also show that the levels of cholesterol oxidation products found in normal LDL are not cytotoxic whereas those present in oxidized LDL exceed the toxic threshold for endothelial cells and account for most of the cytotoxicity produced by this modified lipoprotein.

UI MeSH Term Description Entries
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002412 Cations Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis. Cation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

A Sevanian, and H N Hodis, and J Hwang, and L L McLeod, and H Peterson
December 1999, Nihon rinsho. Japanese journal of clinical medicine,
A Sevanian, and H N Hodis, and J Hwang, and L L McLeod, and H Peterson
October 2006, Free radical research,
A Sevanian, and H N Hodis, and J Hwang, and L L McLeod, and H Peterson
May 2000, Nihon Ronen Igakkai zasshi. Japanese journal of geriatrics,
A Sevanian, and H N Hodis, and J Hwang, and L L McLeod, and H Peterson
November 1998, Journal of lipid research,
A Sevanian, and H N Hodis, and J Hwang, and L L McLeod, and H Peterson
November 2018, Cytokine,
A Sevanian, and H N Hodis, and J Hwang, and L L McLeod, and H Peterson
July 2003, Brain pathology (Zurich, Switzerland),
A Sevanian, and H N Hodis, and J Hwang, and L L McLeod, and H Peterson
November 1998, The Journal of clinical investigation,
A Sevanian, and H N Hodis, and J Hwang, and L L McLeod, and H Peterson
April 1997, In vitro cellular & developmental biology. Animal,
A Sevanian, and H N Hodis, and J Hwang, and L L McLeod, and H Peterson
January 1998, Annals of clinical biochemistry,
A Sevanian, and H N Hodis, and J Hwang, and L L McLeod, and H Peterson
July 2008, Free radical biology & medicine,
Copied contents to your clipboard!