Modulation of calcium efflux from cultured rat dorsal root ganglion neurons. 1996

J L Werth, and Y M Usachev, and S A Thayer
Department of Pharmacology, University of Minnesota Medical School, Minneapolis 55455, USA.

The free intracellular Ca2+ concentration ([Ca2+]i) is governed by the balance between the activation of Ca2+ channels and buffering and efflux processes. We tested the hypothesis that Ca2+ efflux pathways are susceptible to modulation. The whole-cell patch-clamp technique was used in combination with Indo-1-based microfluorometry to record Ca2+ current and [Ca2+]i simultaneously from single rat dorsal root ganglion (DRG) neurons grown in culture. Depolarizing test pulses (-80 to 0 mV, 100-300 msec) elicited [Ca2+]i transients that recovered to basal levels by a process best-fit with a single exponential (tau = 5.1 +/- 0.4 sec; n = 14) and were independent of Ca2+ load (40-500 pC) over this range of test pulses. [Ca2+]i transients recorded in whole-cell configuration were similar to those elicited by a brief train of action potentials in unclamped neurons. Inhibition of Ca2+ sequestration into intracellular stores with thapsigargin had no effect on the kinetics of recovery. Inhibition of plasma membrane Ca2+ ATPase (PMCA) function by including a peptide inhibitor (C28R2) in the patch pipette significantly slowed recovery to basal [Ca2+]i (tau = 9.9 +/- 0.8 sec; n = 4). Preincubation with calmidazolium, a calmodulin antagonist, produced modest slowing of Ca2+ efflux. Phorbol dibutyrate, an activator of protein kinase C (PKC), accelerated Ca2+ efflux only when the PMCA had been inhibited by C28R2. We conclude that in DRG neurons PMCAs are responsible for lowering [Ca2+]i after small Ca2+ loads and that PMCA-mediated Ca2+ efflux is modulated by calmodulin- and PKC-signaling pathways.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D007424 Intracellular Fluid The fluid inside CELLS. Fluid, Intracellular,Fluids, Intracellular,Intracellular Fluids
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell

Related Publications

J L Werth, and Y M Usachev, and S A Thayer
January 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J L Werth, and Y M Usachev, and S A Thayer
March 2021, General physiology and biophysics,
J L Werth, and Y M Usachev, and S A Thayer
December 1990, Molecular pharmacology,
J L Werth, and Y M Usachev, and S A Thayer
June 2003, Neurotoxicology,
J L Werth, and Y M Usachev, and S A Thayer
March 1992, Journal of neuroscience research,
J L Werth, and Y M Usachev, and S A Thayer
August 1993, Neuroscience,
J L Werth, and Y M Usachev, and S A Thayer
September 2006, Neuroscience letters,
J L Werth, and Y M Usachev, and S A Thayer
August 2000, European journal of pharmacology,
J L Werth, and Y M Usachev, and S A Thayer
April 2003, Brain research,
J L Werth, and Y M Usachev, and S A Thayer
November 1993, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!