The inhibition of maltose transport by the unliganded form of the maltose-binding protein of Escherichia coli: experimental findings and mathematical treatment. 1995

G Merino, and W Boos, and H A Shuman, and E Bohl
Department of Microbiology, Columbia University, New York, USA.

Binding protein-dependent transport systems in Gram-negative enteric bacteria are multicomponent systems in which a soluble periplasmic binding protein of high substrate binding affinity establishes the major substrate recognition site. Usually, there are two integral membrane proteins which are thought to interact with the substrate loaded form of the binding protein to allow transport of substrate to occur. Transport is against the concentration gradient and needs energization by an ATP hydrolizing polypeptide. Overall transport is considered mainly unidirectional due to the high energy of ATP hydrolysis coupled to transport. In the study reported here, maltose transport in membrane vesicles in the presence of varying concentrations of unliganded maltose-binding protein but with constant amounts of maltose was measured. The conditions were chosen such that the concentration of maltose was always smaller than that of the binding protein and the initial concentration of the liganded binding protein was essentially constant. It was found that the initial rate of transport went through a maximum with increasing amounts of binding protein and declined thereafter. This finding strongly supports the conclusion that both the liganded and the unliganded forms of the binding protein interact with the membrane components of the transport system. The mathematical treatment of the experimental data allowed the ratio of the affinities for the membrane components of the substrate loaded and unloaded binding protein to be estimated. Published data on the binding protein-dependent transport of histidine in membrane vesicles of Salmonella typhimurium were also used. The data allowed the ratio of the binding affinity of the membrane components to the substrate-loaded and free binding protein to be determined. In addition, the KM of transport to the KD of binding protein was approximated.

UI MeSH Term Description Entries
D008320 Maltose A dextrodisaccharide from malt and starch. It is used as a sweetening agent and fermentable intermediate in brewing. (Grant & Hackh's Chemical Dictionary, 5th ed)
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D058619 Maltose-Binding Proteins Periplasmic proteins that bind MALTOSE and maltodextrin. They take part in the maltose transport system of BACTERIA. Maltose-Binding Protein,Maltose Binding Protein,Maltose Binding Proteins
D018528 ATP-Binding Cassette Transporters A family of MEMBRANE TRANSPORT PROTEINS that require ATP hydrolysis for the transport of substrates across membranes. The protein family derives its name from the ATP-binding domain found on the protein. ABC Transporter,ABC Transporters,ATP-Binding Cassette Transporter,ATP Binding Cassette Transporter,ATP Binding Cassette Transporters,Cassette Transporter, ATP-Binding,Transporter, ABC,Transporter, ATP-Binding Cassette,Transporters, ABC,Transporters, ATP-Binding Cassette
D029968 Escherichia coli Proteins Proteins obtained from ESCHERICHIA COLI. E coli Proteins

Related Publications

G Merino, and W Boos, and H A Shuman, and E Bohl
August 2009, Biochemistry,
G Merino, and W Boos, and H A Shuman, and E Bohl
January 1982, Methods in enzymology,
G Merino, and W Boos, and H A Shuman, and E Bohl
August 1974, European journal of biochemistry,
G Merino, and W Boos, and H A Shuman, and E Bohl
September 1982, The Journal of biological chemistry,
G Merino, and W Boos, and H A Shuman, and E Bohl
April 1987, Journal of molecular biology,
G Merino, and W Boos, and H A Shuman, and E Bohl
June 1986, Biochemistry international,
G Merino, and W Boos, and H A Shuman, and E Bohl
May 1977, European journal of biochemistry,
G Merino, and W Boos, and H A Shuman, and E Bohl
January 1989, Journal of bacteriology,
G Merino, and W Boos, and H A Shuman, and E Bohl
December 1976, European journal of biochemistry,
Copied contents to your clipboard!