Alterations in striatal dopamine release and reuptake under conditions of mild, moderate, and severe cerebral ischemia. 1995

T Kondoh, and S H Lee, and W C Low
Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, USA.

Cerebral ischemia can result in varying degrees of tissue damage. Conditions of severe ischemia can produce extensive areas of irreversible injury, whereas in conditions of moderate ischemia, tissue damage may be reversible, as in the region of the ischemic penumbra. The reversibility of tissue damage in the penumbral region is of clinical interest, because the characterization of conditions underlying this reversible state may provide information needed for the development of new therapeutic approaches for treatment. Our previous studies demonstrated neurochemical alterations in the levels of dopamine (DA) within the striatum after cerebral ischemia. In the present study, we postulate that these changes may be caused, in part, by alterations in transmitter release and reuptake. To test this hypothesis, forebrain ischemia was induced in Sprague-Dawley rats (Harlan, Indianapolis, IN) by means of bilateral common carotid artery occlusion and hemorrhagic hypotension. Cerebral blood flow (CBF) in the striatum was measured by the method of hydrogen clearance, and the extracellular DA ([DA]e) levels were measured by in vivo microdialysis. Varied reductions of CBF were induced and maintained for 5 hours. Three subgroups were established retrospectively according to the degree of CBF reduction: 67.7, 35.6, and 13.2% of normal CBF in the mild, moderate, and severe ischemic groups, respectively. The induction of ischemia resulted in 1.9-, 9.3-, and 122.3-fold increases in [DA]e above baseline in the mild, moderate, and severe ischemia groups, respectively. At 3 hours after the induction of ischemia, high potassium (100 mmol/L) or Nomifensin (Sigma, St. Louis, MO) (10 mmol/L), a DA uptake blocker, was administrated via a microdialysis probe to stimulate DA release while reductions in CBF were maintained continuously. Thirteen rats were used in the study of the release of DA by potassium or Nomifensin in nonischemic conditions. The administration of high potassium or Nomifensin stimulated DA release in conditions of mild and moderate ischemia. The increase in DA release by potassium stimulation was higher in rats with mild ischemia (106.6-fold) than that in normal rats (22.3-fold). This suggests a hyperexcitability of DA terminals under mild ischemia, as compared with nonischemic conditions. On the other hand, Nomifensin increased [DA]e levels more in moderately ischemic brains than in control brains, suggesting that DA uptake is up-regulated in the former case. The increased release of DA by potassium and Nomifensin was sustained after stimulation in conditions of mild and moderate ischemia. The high level of [DA]e with severe ischemia after ischemic induction was sustained throughout the period of study and was not stimulated by potassium or Nomifensin. We conclude that under conditions of mild and moderate ischemia, DA terminals become highly excitable and reuptake mechanisms are compromised. These changes of DA metabolism during mild and moderate ischemia may explain the sustainability of neurons in the "penumbra" condition of cerebral ischemia and the transformation of the ischemic penumbra to a necrotic core.

UI MeSH Term Description Entries
D008297 Male Males
D009627 Nomifensine An isoquinoline derivative that prevents dopamine reuptake into synaptosomes. The maleate was formerly used in the treatment of depression. It was withdrawn worldwide in 1986 due to the risk of acute hemolytic anemia with intravascular hemolysis resulting from its use. In some cases, renal failure also developed. (From Martindale, The Extra Pharmacopoeia, 30th ed, p266) Hoe-984,Linamiphen,Merital,Nomifensin,Nomifensine Maleate,Nomifensine Maleate (1:1),Hoe 984,Hoe984,Maleate, Nomifensine
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D001925 Brain Damage, Chronic A condition characterized by long-standing brain dysfunction or damage, usually of three months duration or longer. Potential etiologies include BRAIN INFARCTION; certain NEURODEGENERATIVE DISORDERS; CRANIOCEREBRAL TRAUMA; ANOXIA, BRAIN; ENCEPHALITIS; certain NEUROTOXICITY SYNDROMES; metabolic disorders (see BRAIN DISEASES, METABOLIC); and other conditions. Encephalopathy, Chronic,Chronic Encephalopathy,Chronic Brain Damage
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

T Kondoh, and S H Lee, and W C Low
June 1988, Experientia,
T Kondoh, and S H Lee, and W C Low
April 1995, Neurochemical research,
T Kondoh, and S H Lee, and W C Low
January 2010, Journal of neurology, neurosurgery, and psychiatry,
T Kondoh, and S H Lee, and W C Low
April 2020, ACS chemical neuroscience,
T Kondoh, and S H Lee, and W C Low
January 1986, Epilepsia,
T Kondoh, and S H Lee, and W C Low
December 1991, Stroke,
T Kondoh, and S H Lee, and W C Low
September 1977, Nature,
T Kondoh, and S H Lee, and W C Low
December 1988, Stroke,
T Kondoh, and S H Lee, and W C Low
August 1995, Journal of vascular surgery,
Copied contents to your clipboard!