Identification of the fifth subunit of Saccharomyces cerevisiae replication factor C. 1995

S L Gary, and M J Burgers
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.

Yeast replication factor C (RF-C) is a multipolypeptide complex required for chromosomal DNA replication. Previously this complex was known to consist of at least four subunits. We here report the identification of a fifth RF-C subunit from Saccharomyces cerevisiae, encoded by the RFC5 (YBR0810) gene. This subunit exhibits highest homology to the 38 kDa subunit (38%) of human RF-C (activator 1). Like the other four RFC genes, the RFC5 gene is essential for yeast viability, indicating an essential function for each subunit. RFC5 mRNA is expressed at steady-state levels throughout the mitotic cell cycle. Upon overexpression in Escherichia coli Rfc5p has an apparent molecular mass of 41 kDa. Overproduction of RF-C activity in yeast is dependent on overexpression of the RFC5 gene together with overexpression of the RFC1-4 genes, indicating that the RFC5 gene product forms an integral subunit of this replication factor.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D015778 Minor Histocompatibility Antigens Allelic alloantigens often responsible for weak graft rejection in cases when (major) histocompatibility has been established by standard tests. In the mouse they are coded by more than 500 genes at up to 30 minor histocompatibility loci. The most well-known minor histocompatibility antigen in mammals is the H-Y antigen. Histocompatibility Antigens, Minor,Minor Histocompatibility Antigen,Minor Histocompatibility Peptide,Minor Histocompatibility Peptides,Antigen, Minor Histocompatibility,Histocompatibility Antigen, Minor,Histocompatibility Peptide, Minor,Histocompatibility Peptides, Minor,Peptide, Minor Histocompatibility
D016415 Sequence Alignment The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms. Sequence Homology Determination,Determination, Sequence Homology,Alignment, Sequence,Alignments, Sequence,Determinations, Sequence Homology,Sequence Alignments,Sequence Homology Determinations

Related Publications

S L Gary, and M J Burgers
May 1994, Nucleic acids research,
S L Gary, and M J Burgers
September 1995, Molecular and cellular biology,
S L Gary, and M J Burgers
December 1992, The Journal of biological chemistry,
S L Gary, and M J Burgers
November 1991, The Journal of biological chemistry,
Copied contents to your clipboard!