Bacteriostatic and bactericidal activities of selected beta-lactam antibiotics studied on agar plates. 1977

G Masuda, and S Tomioka, and H Uchida, and M Hasegawa

A novel and time-saving method for assessing bactericidal activities of beta-lactam antibiotics on agar plates is described. Minimal inhibitory concentrations (MICs) were determined by the agar dilution method. A potent beta-lactamase solution was sprayed onto the plates to inactivate the antibiotic. After further incubation at 37 degrees C overnight, the minimal concentration at which no visible growth occurred on the plates was defined as minimal bactericidal concentration (MBC). With undiluted culture as the inoculum, strains of Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae showed a marked increase in MBC values compared with the values of MIC. There was a marked decrease in both the MICs and MBCs with diminution of inoculum size. The two concentrations were almost the same when the inoculum size was decreased to a 10(-4) dilution. In contrast, MIC and MBC for enterococci showed no marked decrease with decrease in inoculum size. Although the present study was performed with beta-lactamase-unstable penicillins and cephalosporins, the method can be applicable with any beta-lactam antibiotic if optimal and potent enzymes are available.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D010405 Penicillinase A beta-lactamase preferentially cleaving penicillins. (Dorland, 28th ed) EC 3.5.2.-. beta-Lactamase I,AER-I beta-Lactamase,Benzylpenicillinase,Carbenicillinase,Exopenicillinase,beta Lactamase III,beta Lactamase RP4,gamma-Penicillinase,AER I beta Lactamase,Lactamase RP4, beta,beta Lactamase I,beta-Lactamase, AER-I,gamma Penicillinase
D010406 Penicillins A group of antibiotics that contain 6-aminopenicillanic acid with a side chain attached to the 6-amino group. The penicillin nucleus is the chief structural requirement for biological activity. The side-chain structure determines many of the antibacterial and pharmacological characteristics. (Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1065) Antibiotics, Penicillin,Penicillin,Penicillin Antibiotics
D002510 Cephalosporinase beta-Lactamase II,Cephalexin Amidase,Cephalosporin Amido-beta-Lactam Hydrolase,Cephalosporin beta-Lactamase,Amidase, Cephalexin,Amido-beta-Lactam Hydrolase, Cephalosporin,Cephalosporin Amido beta Lactam Hydrolase,Cephalosporin beta Lactamase,Hydrolase, Cephalosporin Amido-beta-Lactam,beta Lactamase II,beta-Lactamase, Cephalosporin
D002511 Cephalosporins A group of broad-spectrum antibiotics first isolated from the Mediterranean fungus ACREMONIUM. They contain the beta-lactam moiety thia-azabicyclo-octenecarboxylic acid also called 7-aminocephalosporanic acid. Antibiotics, Cephalosporin,Cephalosporanic Acid,Cephalosporin,Cephalosporin Antibiotic,Cephalosporanic Acids,Acid, Cephalosporanic,Acids, Cephalosporanic,Antibiotic, Cephalosporin,Cephalosporin Antibiotics
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004755 Enterobacteriaceae A family of gram-negative, facultatively anaerobic, rod-shaped bacteria that do not form endospores. Its organisms are distributed worldwide with some being saprophytes and others being plant and animal parasites. Many species are of considerable economic importance due to their pathogenic effects on agriculture and livestock. Coliform Bacilli,Enterobacteria,Ewingella,Leclercia,Paracolobactrum,Sodalis
D000667 Ampicillin Semi-synthetic derivative of penicillin that functions as an orally active broad-spectrum antibiotic. Penicillin, Aminobenzyl,Amcill,Aminobenzylpenicillin,Ampicillin Sodium,Ampicillin Trihydrate,Antibiotic KS-R1,Omnipen,Pentrexyl,Polycillin,Ukapen,Aminobenzyl Penicillin,Antibiotic KS R1,KS-R1, Antibiotic,Sodium, Ampicillin,Trihydrate, Ampicillin
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria

Related Publications

G Masuda, and S Tomioka, and H Uchida, and M Hasegawa
November 1979, The Journal of antibiotics,
G Masuda, and S Tomioka, and H Uchida, and M Hasegawa
March 1980, Antimicrobial agents and chemotherapy,
G Masuda, and S Tomioka, and H Uchida, and M Hasegawa
April 1995, Antimicrobial agents and chemotherapy,
G Masuda, and S Tomioka, and H Uchida, and M Hasegawa
July 1983, Antimicrobial agents and chemotherapy,
G Masuda, and S Tomioka, and H Uchida, and M Hasegawa
February 1978, Antimicrobial agents and chemotherapy,
G Masuda, and S Tomioka, and H Uchida, and M Hasegawa
February 1973, Antimicrobial agents and chemotherapy,
G Masuda, and S Tomioka, and H Uchida, and M Hasegawa
December 1975, International journal of clinical pharmacology and biopharmacy,
G Masuda, and S Tomioka, and H Uchida, and M Hasegawa
July 2014, Veterinary microbiology,
Copied contents to your clipboard!