Clinical applications of inhaled nitric oxide in children with pulmonary hypertension. 1995

D L Wessel, and I Adatia
Cardiac Intensive Care Unit, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.

We have presented our experience with the use of inhaled nitric oxide in children with congenital heart disease and pulmonary hypertension, which indicates that nitric oxide is a selective pulmonary vasodilator that may improve patient management, particularly after surgical procedures requiring cardiopulmonary bypass. Indeed, we have now seen several patients in whom all resuscitative maneuvers for the treatment of pulmonary hypertensive crises were unsuccessful until inhaled nitric oxide was added to the therapeutic regimen. In addition, our studies using inhaled nitric oxide as an investigational probe point toward endothelial injury as a contributor to post-cardiopulmonary bypass pulmonary vasoconstriction. Inhaled nitric oxide relieves pulmonary vasoconstriction associated both with left atrial or pulmonary venous hypertension and following the relief of mitral valve or pulmonary venous obstruction. Absence of a response on the usually reactive pulmonary vascular bed of the neonate should prompt a careful search for anatomic, and possibly surgically remediable, pulmonary vascular obstruction. In the short term nitric oxide is less effective in the older patient with obliterative pulmonary vascular disease. It is possible that recent experimental work with long-term nitric oxide inhalation might be applicable to this group of patients. Nitric oxide may have a unique role in the management of the patient after lung transplantation, as it both reduces right ventricular afterload and improves intrapulmonary shunting. Is nitric oxide the ideal agent for testing pulmonary vascular reactivity? Nitric oxide is simple to deliver by either mask or ventilator and, as a trial of vasoreactivity over 15 min, remains free of side effects that might be encountered during long-term administration, such as methemoglobinemia or nitrogen dioxide toxicity. Indeed, no patient developed significant methemoglobinemia after a trial of nitric oxide and neither was a level of nitrogen dioxide above 1 ppm registered during the administration. Thus, nitric oxide gas fulfills many of the ideal characteristics, as suggested by Rubin,92 required of a drug to test the acute responsiveness of the pulmonary circulation. It has better pulmonary dilating effects than systemic, a short half-life, and minimal adverse effects and it can be both easily and quickly administered. Whether it is able to reliably predict the effect of long-term administration of orally active agents awaits confirmation. Certainly, inhaled nitric oxide is rapidly becoming the standard agent to test pulmonary vascular reactivity during diagnostic cardiac catheterization at our institution.

UI MeSH Term Description Entries
D006976 Hypertension, Pulmonary Increased VASCULAR RESISTANCE in the PULMONARY CIRCULATION, usually secondary to HEART DISEASES or LUNG DISEASES. Pulmonary Hypertension
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D006330 Heart Defects, Congenital Developmental abnormalities involving structures of the heart. These defects are present at birth but may be discovered later in life. Congenital Heart Disease,Heart Abnormalities,Abnormality, Heart,Congenital Heart Defect,Congenital Heart Defects,Defects, Congenital Heart,Heart Defect, Congenital,Heart, Malformation Of,Congenital Heart Diseases,Defect, Congenital Heart,Disease, Congenital Heart,Heart Abnormality,Heart Disease, Congenital,Malformation Of Heart,Malformation Of Hearts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000280 Administration, Inhalation The administration of drugs by the respiratory route. It includes insufflation into the respiratory tract. Drug Administration, Inhalation,Drug Administration, Respiratory,Drug Aerosol Therapy,Inhalation Drug Administration,Inhalation of Drugs,Respiratory Drug Administration,Aerosol Drug Therapy,Aerosol Therapy, Drug,Drug Therapy, Aerosol,Inhalation Administration,Administration, Inhalation Drug,Administration, Respiratory Drug,Therapy, Aerosol Drug,Therapy, Drug Aerosol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016041 Heart-Lung Transplantation The simultaneous, or near simultaneous, transference of heart and lungs from one human or animal to another. Grafting, Heart-Lung,Transplantation, Heart-Lung,Grafting, Heart Lung,Graftings, Heart-Lung,Heart Lung Transplantation,Heart-Lung Grafting,Heart-Lung Graftings,Heart-Lung Transplantations,Transplantation, Heart Lung,Transplantations, Heart-Lung

Related Publications

D L Wessel, and I Adatia
November 1994, Acta paediatrica (Oslo, Norway : 1992),
D L Wessel, and I Adatia
March 2024, Clinics in perinatology,
D L Wessel, and I Adatia
January 2001, Lancet (London, England),
D L Wessel, and I Adatia
December 1995, The Annals of thoracic surgery,
D L Wessel, and I Adatia
October 1994, The Annals of thoracic surgery,
D L Wessel, and I Adatia
January 1995, Advances in pharmacology (San Diego, Calif.),
D L Wessel, and I Adatia
May 1995, Zhonghua yi xue za zhi,
D L Wessel, and I Adatia
February 1997, The New England journal of medicine,
Copied contents to your clipboard!