Detection of altered membrane phospholipid asymmetry in subpopulations of human red blood cells using fluorescently labeled annexin V. 1996

F A Kuypers, and R A Lewis, and M Hua, and M A Schott, and D Discher, and J D Ernst, and B H Lubin
Children's Hospital Oakland Research Institute, CA 94609, USA.

The phospholipids of the human red cell are distributed asymmetrically in the bilayer of the red cell membrane. In certain pathologic states, such as sickle cell anemia, phospholipid asymmetry is altered. Although several methods can be used to measure phospholipid organization, small organizational changes have been very difficult to assess. Moreover, these methods fail to identify subpopulations of cells that have lost their normal phospholipid asymmetry. Using fluorescently labeled annexin V in flow cytometry and fluorescent microscopy, we were able to identify and quantify red cells that had lost their phospholipid asymmetry in populations as small as 1 million cells. Moreover, loss of phospholipid organization in subpopulations as small as 0.1% of the total population could be identified, and individual cells could be studied by fluorescent microscopy. An excellent correlation was found between fluorescence-activated cell sorter (FACS) analysis results using annexin V to detect red cells with phosphatidylserine (PS) on their surface and a PS-requiring prothrombinase assay using similar red cells. Cells that bound fluorescein isothiocyanate (FITC)-labeled annexin V could be isolated from the population using magnetic beads covered with an anti-FITC antibody. Evaluation of blood samples from patients with sickle cell anemia under oxygenated conditions demonstrated the presence of subpopulations of cells that had lost phospholipid asymmetry. While only a few red cells were labeled in normal control samples (0.21% +/- 0.12%, n = 8), significantly increased (P < .001) annexin V labeling was observed in samples from patients with sickle cell anemia (2.18% +/- 1.21%, n = 13). We conclude that loss of phospholipid asymmetry may occur in small subpopulations of red cells and that fluorescently labeled annexin V can be used to quantify and isolate these cells.

UI MeSH Term Description Entries
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D010718 Phosphatidylserines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. Serine Phosphoglycerides,Phosphatidyl Serine,Phosphatidyl Serines,Phosphatidylserine,Phosphoglycerides, Serine,Serine, Phosphatidyl,Serines, Phosphatidyl
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D004913 Erythrocytes, Abnormal Oxygen-carrying RED BLOOD CELLS in mammalian blood that are abnormal in structure or function. Abnormal Erythrocytes,Abnormal Erythrocyte,Erythrocyte, Abnormal
D005033 Ethylmaleimide A sulfhydryl reagent that is widely used in experimental biochemical studies. N-Ethylmaleimide,N Ethylmaleimide

Related Publications

F A Kuypers, and R A Lewis, and M Hua, and M A Schott, and D Discher, and J D Ernst, and B H Lubin
January 2015, eNeuro,
F A Kuypers, and R A Lewis, and M Hua, and M A Schott, and D Discher, and J D Ernst, and B H Lubin
January 1985, Bibliotheca haematologica,
F A Kuypers, and R A Lewis, and M Hua, and M A Schott, and D Discher, and J D Ernst, and B H Lubin
July 2023, Bio-protocol,
F A Kuypers, and R A Lewis, and M Hua, and M A Schott, and D Discher, and J D Ernst, and B H Lubin
January 2004, Archives of andrology,
F A Kuypers, and R A Lewis, and M Hua, and M A Schott, and D Discher, and J D Ernst, and B H Lubin
January 2005, Blood purification,
F A Kuypers, and R A Lewis, and M Hua, and M A Schott, and D Discher, and J D Ernst, and B H Lubin
November 1993, FEBS letters,
F A Kuypers, and R A Lewis, and M Hua, and M A Schott, and D Discher, and J D Ernst, and B H Lubin
February 1997, Blood,
F A Kuypers, and R A Lewis, and M Hua, and M A Schott, and D Discher, and J D Ernst, and B H Lubin
April 2024, Nature communications,
F A Kuypers, and R A Lewis, and M Hua, and M A Schott, and D Discher, and J D Ernst, and B H Lubin
January 2013, Advances in experimental medicine and biology,
F A Kuypers, and R A Lewis, and M Hua, and M A Schott, and D Discher, and J D Ernst, and B H Lubin
May 1994, The Journal of laboratory and clinical medicine,
Copied contents to your clipboard!