Nitrate reduction nitrogenase activity in Spirillum lipoferum1. 1977

C A Neyra, and P Van Berkum

Nitrate and nitrite reduction under aerobic, microaerophillic, and anaerobic conditions was demonstrated in Spirillum lipoferum (ATCC 29145). Nitrite did not accumulated during assimilatory nitrate reduction in air. The nitrite produced during dissimilatory nitrate reduction accumulated in the medium but not in the cells. On exposure of the bacteria to nitrate and anaerobiosis, a low initial rate (lag) was followed by accelerated rates of nitrite accumulation. A 3-h anaerobic pretreatment, in the absence of nitrate, did not a void the lag phase. No nitrate reductase activity (NRA) developed in the presence of chloramphenicol. The data suggest that induction of anaerobic NRA in S. lipoferum required nitrate and protein synthesis. Anaerobic N2-ase by S. lipoferum was greatly stimulated in the presence of nitrate. The time course of nitrate reduction was coincidental with the pattern of nitrate-stimulated N2-ase activity inidcating that a relationship exists between these two processes.

UI MeSH Term Description Entries
D009565 Nitrate Reductases Oxidoreductases that are specific for the reduction of NITRATES. Reductases, Nitrate
D009566 Nitrates Inorganic or organic salts and esters of nitric acid. These compounds contain the NO3- radical. Nitrate
D009573 Nitrites Salts of nitrous acid or compounds containing the group NO2-. The inorganic nitrites of the type MNO2 (where M Nitrite
D009591 Nitrogenase An enzyme system that catalyzes the fixing of nitrogen in soil bacteria and blue-green algae (CYANOBACTERIA). EC 1.18.6.1. Dinitrogenase,Vanadium Nitrogenase,Nitrogenase, Vanadium
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D000332 Aerobiosis Life or metabolic reactions occurring in an environment containing oxygen. Aerobioses
D000693 Anaerobiosis The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Anaerobic Metabolism,Anaerobic Metabolisms,Anaerobioses,Metabolism, Anaerobic,Metabolisms, Anaerobic
D013139 Spirillum A genus of gram-negative, curved and spiral-shaped bacteria found in stagnant, freshwater environments. These organisms are motile by bipolar tufts of flagella having a long wavelength and about one helical turn. Some species of Spirillum cause a form of RAT-BITE FEVER.

Related Publications

C A Neyra, and P Van Berkum
September 1978, The Biochemical journal,
C A Neyra, and P Van Berkum
February 1978, Canadian journal of microbiology,
C A Neyra, and P Van Berkum
June 1970, Journal of bacteriology,
C A Neyra, and P Van Berkum
January 1962, Kekkaku : [Tuberculosis],
C A Neyra, and P Van Berkum
August 1980, Applied and environmental microbiology,
C A Neyra, and P Van Berkum
January 1972, Archiv fur Mikrobiologie,
Copied contents to your clipboard!