Molecular analysis of the molybdate uptake operon, modABCD, of Escherichia coli and modR, a regulatory gene. 1995

H M Walkenhorst, and S K Hemschemeier, and R Eichenlaub
Lehrstuhl Gentechnologie/Mikrobiologie, Fakultät für Biologie, Universität Bielefeld, Germany.

The nucleotide sequence of a 6.8-kb chromosomal subfragment of plasmid pHW100 complementing an Escherichia coli modC (chlD) mutant has been determined. This DNA region encodes the genes of a high-affinity uptake system for molybdate arranged in an operon with the genes modABCD. Since the modA product has a signal peptide at the N-terminus it probably is the periplasmic binding-protein for molybdate. The products of modB (chlJ) and modC (chlD) have been described earlier as the inner membrane protein and the ATP-binding protein of the molybdate transport system, respectively. At present, there is no information on possible functions of the fourth gene of the operon, modD. Upstream of the mod operon, two other gene loci, termed modR and an open reading frame ORF6 could be identified. ModR shares homology with a molybdenum-pterin binding protein of Clostridium pasteurianum. ORF6 has extensive homology to ModC and other nucleotide-binding proteins of E. coli. Insertional inactivation of modR and ORF6 using a gentamicin resistance gene cartridge has no effect on molybdoenzyme activities, indicating that none of the two gene products is essential for molybdate uptake or molybdenum cofactor synthesis. However, by using a plasmid carrying a modA-lacZ gene fusion we observed that inactivation of modR releases repression of the mod operon independent of the molybdate concentration in the medium. This indicates that modR is a component of the mod operon regulation or the repressor itself.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008982 Molybdenum A metallic element with the atomic symbol Mo, atomic number 42, and atomic weight 95.95. It is an essential trace element, being a component of the enzymes xanthine oxidase, aldehyde oxidase, and nitrate reductase. Molybdenum-98,Molybdenum 98
D009565 Nitrate Reductases Oxidoreductases that are specific for the reduction of NITRATES. Reductases, Nitrate
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001616 beta-Galactosidase A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases

Related Publications

H M Walkenhorst, and S K Hemschemeier, and R Eichenlaub
September 1995, Journal of bacteriology,
H M Walkenhorst, and S K Hemschemeier, and R Eichenlaub
February 1996, Journal of bacteriology,
H M Walkenhorst, and S K Hemschemeier, and R Eichenlaub
February 1995, Journal of bacteriology,
H M Walkenhorst, and S K Hemschemeier, and R Eichenlaub
March 1967, Biochemical and biophysical research communications,
H M Walkenhorst, and S K Hemschemeier, and R Eichenlaub
August 1999, The Journal of biological chemistry,
H M Walkenhorst, and S K Hemschemeier, and R Eichenlaub
March 2001, Archives of microbiology,
H M Walkenhorst, and S K Hemschemeier, and R Eichenlaub
January 1992, Journal of bacteriology,
H M Walkenhorst, and S K Hemschemeier, and R Eichenlaub
March 1988, Molecular & general genetics : MGG,
Copied contents to your clipboard!