Amino hydroxamic acids as potent inhibitors of leukotriene A4 hydrolase. 1995

J H Hogg, and I R Ollmann, and J Z Haeggström, and A Wetterholm, and B Samuelsson, and C H Wong
Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA.

Leukotriene A4 hydrolase is a zinc-containing enzyme which catalyzes the hydrolysis of LTA4 to LTB4, a proinflammatory mediator. The enzyme also exhibits an aminopeptidase activity. Due to its biological importance, it is of considerable interest to develop selective inhibitors of this enzyme. The design and synthesis of a number of potent beta-amino hydroxylamine and amino hydroxamic acid inhibitors are described here. It was found that having a free amine was essential for high activity. Hydroxylamines were found to be about an order of magnitude less potent than their analogous hydroxamic acids. Our investigation of amino hydroxamic acids as inhibitors of leukotriene A4 hydrolase has led to the development of hydroxamates 16 and 17, which are among the most potent inhibitors found to date. These, compounds were found to be competitive inhibitors with Ki values of 1.6 nM and 3.4 nM respectively, against the peptidase activity. Inhibitor 16 has an IC50 value of < or = 0.15 microM against the epoxide hydrolase activity and is also potent against the production of LTB4 by isolated polymorphonuclear leukocytes (PMNL) activated with ionophore A23187 (IC50 approximately 0.3 microM).

UI MeSH Term Description Entries
D007476 Ionophores Chemical agents that increase the permeability of biological or artificial lipid membranes to specific ions. Most ionophores are relatively small organic molecules that act as mobile carriers within membranes or coalesce to form ion permeable channels across membranes. Many are antibiotics, and many act as uncoupling agents by short-circuiting the proton gradient across mitochondrial membranes. Ionophore
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D004851 Epoxide Hydrolases Enzymes that catalyze reversibly the formation of an epoxide or arene oxide from a glycol or aromatic diol, respectively. Epoxide Hydrase,Epoxide Hydrases,Epoxide Hydratase,Epoxide Hydratases,Epoxide Hydrolase,9,10-Epoxypalmitic Acid Hydrase,Microsomal Epoxide Hydrolase,Styrene Epoxide Hydrolase,9,10 Epoxypalmitic Acid Hydrase,Acid Hydrase, 9,10-Epoxypalmitic,Epoxide Hydrolase, Microsomal,Epoxide Hydrolase, Styrene,Hydrase, 9,10-Epoxypalmitic Acid,Hydrase, Epoxide,Hydrases, Epoxide,Hydratase, Epoxide,Hydratases, Epoxide,Hydrolase, Epoxide,Hydrolase, Microsomal Epoxide,Hydrolase, Styrene Epoxide,Hydrolases, Epoxide
D006098 Granulocytes Leukocytes with abundant granules in the cytoplasm. They are divided into three groups according to the staining properties of the granules: neutrophilic, eosinophilic, and basophilic. Mature granulocytes are the NEUTROPHILS; EOSINOPHILS; and BASOPHILS. Granulocyte
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006877 Hydroxamic Acids A class of weak acids with the general formula R-CONHOH. Hydroxamic Acid,Acid, Hydroxamic,Acids, Hydroxamic
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

J H Hogg, and I R Ollmann, and J Z Haeggström, and A Wetterholm, and B Samuelsson, and C H Wong
December 2023, Journal of medicinal chemistry,
J H Hogg, and I R Ollmann, and J Z Haeggström, and A Wetterholm, and B Samuelsson, and C H Wong
May 2008, Bioorganic & medicinal chemistry,
J H Hogg, and I R Ollmann, and J Z Haeggström, and A Wetterholm, and B Samuelsson, and C H Wong
March 2003, Bioorganic & medicinal chemistry letters,
J H Hogg, and I R Ollmann, and J Z Haeggström, and A Wetterholm, and B Samuelsson, and C H Wong
July 2008, Bioorganic & medicinal chemistry letters,
J H Hogg, and I R Ollmann, and J Z Haeggström, and A Wetterholm, and B Samuelsson, and C H Wong
July 2008, Bioorganic & medicinal chemistry letters,
J H Hogg, and I R Ollmann, and J Z Haeggström, and A Wetterholm, and B Samuelsson, and C H Wong
November 2016, Bioorganic & medicinal chemistry,
J H Hogg, and I R Ollmann, and J Z Haeggström, and A Wetterholm, and B Samuelsson, and C H Wong
January 2014, Bioorganic & medicinal chemistry letters,
J H Hogg, and I R Ollmann, and J Z Haeggström, and A Wetterholm, and B Samuelsson, and C H Wong
August 2002, Prostaglandins & other lipid mediators,
J H Hogg, and I R Ollmann, and J Z Haeggström, and A Wetterholm, and B Samuelsson, and C H Wong
February 2001, Current pharmaceutical design,
J H Hogg, and I R Ollmann, and J Z Haeggström, and A Wetterholm, and B Samuelsson, and C H Wong
May 2014, Amino acids,
Copied contents to your clipboard!