Differential desensitization properties of rat neuronal nicotinic acetylcholine receptor subunit combinations expressed in Xenopus laevis oocytes. 1995

C R Vibat, and J A Lasalde, and M G McNamee, and E L Ochoa
Section of Molecular and Cellular Biology, University of California at Davis 95616, USA.

1. Chronic administration of nicotine up-regulates mammalian neuronal nicotinic acetylcholine receptors (nAChRs). A key hypothesis that explains up-regulation assumes that nicotine induces desensitization of receptor function. This is correlated with behaviorally expressed tolerance to the drug. 2. The present experiments were conducted to: (a) obtain information on the nicotine-induced desensitization of neuronal nAChR function, a less understood phenomenon as compared to that of the muscle and electric fish receptor counterparts; (b) test the hypothesis that different receptor subunit combinations exhibit distinct desensitization patterns. 3. Xenopus laevis oocytes were injected with mRNAs encoding rat receptor subunits alpha 2, alpha 3, or alpha 4 in pairwise combination with the beta 2 subunit. The responses to various concentrations of acetylcholine (ACh) or nicotine were analyzed by the two electrode voltage clamp technique. 4. Concentration-effect curves showed that nicotine was more potent than ACh for all the receptor subunit combinations tested. Only the alpha 4 beta 2 combination exhibited a depression of the maximum effect at concentrations higher than 20 microM nicotine. 5. After a single nicotine pulse, receptor desensitization (calculated as a single exponential decay) was significantly slower for alpha 4 beta 2 than for either alpha 3 beta 2 or alpha 2 beta 2. 6. Concentrations of nicotine that attained a near maximum effect were applied, washed, and re-applied in four minute cycles. The responses were calculated as percentages of the current evoked by the initial application. Following 16 minutes of this protocol, the alpha 4 beta 2 combination showed a greater reduction of the original response as compared to the alpha 2 beta 2 and alpha 3 beta 2 subunit combinations. Taking points 5 and 6 together, these experiments suggest that the alpha 4 beta 2 receptor subtype desensitizes at a slower rate and remains longer in the desensitized state. 7. Because alpha 4 beta 2 is the main receptor subunit combination within the brain and is up-regulated by nicotine, our data may be important for understanding the molecular basis of tolerance to this drug.

UI MeSH Term Description Entries
D007552 Isotonic Solutions Solutions having the same osmotic pressure as blood serum, or another solution with which they are compared. (From Grant & Hackh's Chemical Dictionary, 5th ed & Dorland, 28th ed) Solutions, Isotonic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009538 Nicotine Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine Bitartrate,Nicotine Tartrate
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D004361 Drug Tolerance Progressive diminution of the susceptibility of a human or animal to the effects of a drug, resulting from its continued administration. It should be differentiated from DRUG RESISTANCE wherein an organism, disease, or tissue fails to respond to the intended effectiveness of a chemical or drug. It should also be differentiated from MAXIMUM TOLERATED DOSE and NO-OBSERVED-ADVERSE-EFFECT LEVEL. Drug Tolerances,Tolerance, Drug,Tolerances, Drug
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006531 HEPES A dipolar ionic buffer. N-2-Hydroxyethylpiperazine-N'-2'-ethanesulfonic Acid,HEPES Monosodium Salt,Monosodium Salt, HEPES,N 2 Hydroxyethylpiperazine N' 2' ethanesulfonic Acid,Salt, HEPES Monosodium
D000077331 Ringer's Solution An isotonic solution; the base contains SODIUM CHLORIDE; POTASSIUM CHLORIDE; and CALCIUM CHLORIDE. Other chemicals, such as SODIUM BICARBONATE or acetate salts may be added, as needed for pH buffering, or as an energy source. Ringers Solution,Ringer Solution

Related Publications

C R Vibat, and J A Lasalde, and M G McNamee, and E L Ochoa
November 1991, Pflugers Archiv : European journal of physiology,
C R Vibat, and J A Lasalde, and M G McNamee, and E L Ochoa
April 1993, Neuroscience letters,
C R Vibat, and J A Lasalde, and M G McNamee, and E L Ochoa
November 2003, Invertebrate neuroscience : IN,
C R Vibat, and J A Lasalde, and M G McNamee, and E L Ochoa
May 1995, Clinical and experimental pharmacology & physiology,
C R Vibat, and J A Lasalde, and M G McNamee, and E L Ochoa
December 1998, Molecular pharmacology,
C R Vibat, and J A Lasalde, and M G McNamee, and E L Ochoa
November 1989, Neuron,
C R Vibat, and J A Lasalde, and M G McNamee, and E L Ochoa
October 1993, The Journal of physiology,
C R Vibat, and J A Lasalde, and M G McNamee, and E L Ochoa
March 2014, European journal of pharmacology,
C R Vibat, and J A Lasalde, and M G McNamee, and E L Ochoa
November 1988, Neuron,
Copied contents to your clipboard!