Genes of the Enhancer of split and achaete-scute complexes are required for a regulatory loop between Notch and Delta during lateral signalling in Drosophila. 1996

P Heitzler, and M Bourouis, and L Ruel, and C Carteret, and P Simpson
Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, ILLKIRCH, Strasbourg, France.

Like the neuroblasts of the central nervous system, sensory organ precursors of the peripheral nervous system of the Drosophila thorax arise as single spaced cells. However, groups of cells initially have neural potential as visualized by the expression of the proneural genes achaete and scute. A class of genes, known as the 'neurogenic genes', function to restrict the proportion of cells that differentiate as sensory organ precursors. They mediate cell communication between the competent cells by means of an inhibitory signal, Delta, that is transduced through the Notch receptor and results in a cessation of achaete-scute activity. Here we show that mutation of either the bHLH-encoding genes of the Enhancer of split complex (E(spl)-C) or groucho, like Notch or Delta mutants, cause an overproduction of sensory organ precursors at the expense of epidermis. The mutant cells behave antonomously suggesting that the corresponding gene products are required for reception of the inhibitory signal. Epistasis experiments place both E(spl)-C bHLH-encoding genes and groucho downstream of Notch and upstream of achaete and scute, consistent with the idea that they are part of the Notch signalling cascade. Since all competent cells produce both the receptor and its ligand, it was postulated that Notch and Delta are linked within each cell by a feedback loop. We show, that, like mutant Notch cells, cells mutant for E(spl)-C bHLH-encoding genes or groucho inhibit neighbouring wild-type cells causing them to adopt the epidermal fate. This inhibition requires the genes of the achaete-scute complex (AS-C) which must therefore regulate the signal Delta. Thus there is a regulatory loop between Notch and Delta that is under the transcriptional control of the E(spl)-C and AS-C genes.

UI MeSH Term Description Entries
D007301 Insect Hormones Hormones secreted by insects. They influence their growth and development. Also synthetic substances that act like insect hormones. Insect Hormone,Hormone, Insect,Hormones, Insect
D008297 Male Males
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009030 Mosaicism The occurrence in an individual of two or more cell populations of different chromosomal constitutions, derived from a single ZYGOTE, as opposed to CHIMERISM in which the different cell populations are derived from more than one zygote.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009420 Nervous System The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed) Nervous Systems,System, Nervous,Systems, Nervous
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins

Related Publications

P Heitzler, and M Bourouis, and L Ruel, and C Carteret, and P Simpson
March 1991, Science (New York, N.Y.),
P Heitzler, and M Bourouis, and L Ruel, and C Carteret, and P Simpson
September 1990, Development (Cambridge, England),
P Heitzler, and M Bourouis, and L Ruel, and C Carteret, and P Simpson
July 1996, Molecular & general genetics : MGG,
P Heitzler, and M Bourouis, and L Ruel, and C Carteret, and P Simpson
December 1994, Development (Cambridge, England),
P Heitzler, and M Bourouis, and L Ruel, and C Carteret, and P Simpson
November 2005, BMC evolutionary biology,
P Heitzler, and M Bourouis, and L Ruel, and C Carteret, and P Simpson
August 1997, Molecular and cellular biology,
P Heitzler, and M Bourouis, and L Ruel, and C Carteret, and P Simpson
October 2000, Molecular cell,
P Heitzler, and M Bourouis, and L Ruel, and C Carteret, and P Simpson
August 1989, Genetical research,
P Heitzler, and M Bourouis, and L Ruel, and C Carteret, and P Simpson
April 2007, Genetics,
P Heitzler, and M Bourouis, and L Ruel, and C Carteret, and P Simpson
August 1988, The EMBO journal,
Copied contents to your clipboard!